PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998
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We derive the nonasymptotic expressions for the frequency- and temperature-dependent sound velocity and
sound absorption near a critical point in a mixture within renormalization group theory in one-loop order. The
dynamic model considered is an extension of the corresponding model for pure fluids including concentration
fluctuations. The theoretical result for the complex sound velocity is the same as at consolute points and
gas-liquid critical points reflecting universality. Differences observed in the experiments at the two critical
points mentioned are due to the different behavior of the sound velocity,athich is finite in mixtures and
zero in pure fluids, as well as due to nonasymptotic effects. Near the consolute point we compare our result
with the phenomenological theory of Ferrell and Bhattachdffe/s. Rev. B24, 4095(1981); Phys. Rev. A
31, 1788(1985] and near the gas-liquid critical point with experiments in thie-*He mixture. A genuine
dynamic parameter not considered so far and related to the critical enhancement of the thermal conductivity
appears in the nonasymptotic expressions of the transport coefficients and the complex sound velocity. All
nonuniversal background parameters of the complex sound velocity are fixed by a comparison of the corre-
sponding theoretical expressions for the transport coefficients with experirfi@h@63-651X98)10711-0

PACS numbg(s): 64.70.Fx, 64.60.Ht

[. INTRODUCTION critical sound behavidrl8] that is in agreement with our RG
calculationg 19].

This paper continues our calculation of nonasymptotic Critical effects in transport properties near a second-order
transport properties within renormalization grouRG) phase transition are usually described by stochastic equations
theory near critical points in fluids and mixtures. In Ref] neglecting the sound mode. It is well established that univer-
the dynamics of pure fluids was considered including soungal quantities such as the critical exponents, in particular the
propagation. Here we extend the theory to mixtures near gynamic critical exponent, are not affected by the sound
consolute point, as well as near a plait paigas-liquid crit- ~ mode. This is not generally true for nonasymptotic proper-
cal poind. All these critical points belong to the same uni- ties. As an example we mention the superfluid transition in
versality class of modeH [2], although the nonuniversal “He, where additional terms are present in the thermal con-
behavior may be different3]. Moreover, one does not al- ductivity when the sound mode is coupled to the other hy-
ways reach asymptotics within the experimental region andirodynamic modes and the order param¢gf]. Near the
in order to compare with experiments a nonasymptoti(,criticm point in a pure liquid no additional contributions ap-
theory describing the crossover to the background behavideear[1].
is needed4]. The paper is organized as follows. In Sec. Il we define the

Regarding the transport coefficients such as mass diffustatic Hamiltonian and the stochastic model equations. Then
sion, thermal conductivity, thermal diffusion ratio, and shearthe relation between the model vertex functions and the hy-
viscosity, mainly mode coupling theory or variants havedrodynamic transport coefficients is derived in Secs. Il A
been used to describe the nonasymptotic behavior near ti@d Ill B. The expressions for the sound mode are presented
critical points. At a plait point the mode coupling theory hasin Sec. lll C. Then in Sec. IV we compare our theoretical
recently been further developed in Rg5]; the decoupled results with experiment. In Sec. IV A we analyze the shear
mode theory was used in Ref§—9]. RG results were al- Viscosity near consolute and plait points for aniline-
ready used for the comparison JHe-*He mixtures near the Ccyclohexane mixtures andHe-*He mixtures, respectively.
plait point in Refs[10,11]. Near the consolute point several Taking the dynamic parameters found in comparison with
mixtures have been considered in Hé2] and the enhance- €xperimental data, we predict the sound velocity and attenu-
ment of the thermal conductivity in butoxyethanol-wateration near a plait point in Sec. IV B. Other hydrodynamic
mixtures could be accounted fft3]. transport coefficients are compared with experiment in Sec.

The critical sound propagation near a consolute point hat/ C. A comparison of our result with the phenomenological
been described by Ferrell and Bhattacharjee within a phetheory of Ferrell and Bhattacharjee is contained in Sec. V. A
nomenological theory based on a generalization of the spdliscussion is given in Sec. VI. In Appendixes A-E further
cific heat to finite frequencies taking into account the causafletails of the theoretical calculations are given.
and scaling properties of the dynamic functions involved
[14,15. An earlier application of the RG theory to critical
sound at the consolute point used a reduced model neglect-
ing, e.g., the thermal diffusion ratidl6]. Recently, Onuki The critical behavior of the hydrodynamic transport coef-
used the bulk viscosityl7] for an intuitive derivation of the ficients corresponding to the slow heat and mass diffusion
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modes at the plait point and at the consolute point have been At the plait point the entropy per mass fluctuation is cho-
investigated recentlyf10,3,11. These investigations have sen as the order parameter

been performed in a reduced mod¥l based on the consid-

erations of[2], where the fast mode describing the critical Bo(X) = NA[Ao(x) — (A a(x))], 21
sound propagation has been neglected, although3jna
complete model including the sound propagation has alread
been derived. This model, which is applicable at the plai
point as well as at the consolute point, is the basis for the _ _

considerations in the present work. bo(X) = VNA[Ac(x)—(Ac(x))]. 2.2

hile at the consolute point the concentration fluctuation
epresents the order parameter

The secondary densities are defined as
A. Statics

- o . | Go(X) = VNAAY(X) ~ Qo(x), 23
The derivation of the static functional, which determines
the critical behavior of the thermodynamic derivatives, pro-wherey"= (c,p) andQ=(dy/da), p at the plait point, and
ceeds in the following three steps, performed explicitljy3h y'=(o.p) and 6:(537/50)T,P at the consolute point. The

and summarized here. Avogadro numbeiN, has been introduced for convenience

M) Accordmg to methods in nonnghbngm statistical to turn the Boltzmann constakg into the gas constarmR in
thermodynamicg21], a local probability density has been all expressions

introduced, which is defined by an internal energy density, Now both cases can be treated by one form of the static
the kinetic energy density, and the local conserved denSitieﬁmctional

(all densities per volume In liquid mixtures the local con-

served densities include the entropy density), the mass 1 1

densitiesps(x),pa(x) of the two constituents of the mixture H :j ddx{— T¢5(X) + = [V do(x)]?

(e.g., °He and“*He), and the momentum currefi(x). The 2 2

conjugated local intensive fields are the temperafe), 1 &
the chemical potentials of the two constitueptgx), wa(X), Z 6T AG 42 —
and the velocity(x). Instead ofps(x),p4(X) one also can * 3 GCOAdo(X)+ 5 )+ 77 Fo(X)

=

useps(x) and the mass densip(X) = p3(X) + p4(X) as local 1

densities when the corresponding intensive figldéx) and Lot 20\ RTa

wa(x) are changed ta,(x) and the chemical g?[ential dif- 5 Yq%90(X) $o() hqu(X)}' @4
ferenceA (x) = u3(X) — na(Xx). Assuming that the local den- ) .

sities are fluctuating around their thermodynamic averagd he overcircle on the parameters and the subscript O on the
values, they may be written ag(X)=a+Aa(x) with « d_ensmes denote unrenormallzed_quantltlgs. _The static func-
=s,p3.p,j’, WhereA denotes the fluctuating part. The local tional has the same structure as in pure liguidls but now
thermodynamic potential is then divided into an equilibriumWith two secondary densitiegg=(;,d,). As a conse-
part and a part containing the contributions from the fluctuaguence, the parameters

tions. A static functional is obtained by expanding the fluc- . o
tuation contribution into powers of the conserved densities. o (811 a > _ (N ﬁ _ hy 2.5
The correlations of the conserved densities are related to app, ay/ T \y2)t 9 \hy ’

thermodynamic derivativegspecific heat, compressibility,
etc) at fixed intensive fieldd, A, w4, andv. are matrices and vectors instead of scalars. The momentum

(i) Instead of the fielgu, it is more convenient to intro- density appearing in _Eq(2.4) is also rescaled by the
duce the experimental accessible field, the presBurhis ~ Avogadro numberj=NaAj’. The parameteg; follows
can be achieved by introducing the entropy per mage) from the expression for the kinetic energy and reagls
=3s(x)/p(x) and the mass concentrati@ix) = p3(x)/p(x) =1/RTp. The coefficients of the matri® are the lowest-
in the static functional. The fluctuations of the densities peirder contributions to the static two-point vertex functions
volume will then be replaced byAs(x)=pAac(x) and therefore do not contain critical effects. They are related
+o0Ap(x) andAps(X) =pAc(x)+cAp(x). These new den- to background values of thermodynamic derivatives at the
sities have the advantage that they also appear in the hydrptait and the consolute point, respectively. Their explicit val-
dynamic theory. ues are given in Appendix A.

(iii ) In the next step we have to distinguish between the A static functional of the same structure as E2.4) is
plait point and the consolute point since only the order paused in the renormalization group theory of théransition
rameterg, has to be taken into account in fourth order. Thein *He-*He mixtures[22,23 without coupling to the sound
order parameter is then decoupled from the remaining twenode and at th& transition in puré'He when the first sound
densities(the momentum density trivially decouples from all propagation is include@20]. The treatment of Eq(2.4) is
other densities which then represent secondary densitiestherefore well known and the main relations used in the fol-
Go=(01,G,) in the quadratic part. This decoupling is ob- lowing are briefly summarized.
tained by a shift of the order parameter and a restriction of Since the static critical behavior of mixtures belongs to
the secondary densities to a subspace with fixed order pararifte same universality class as pure fluids the critical proper-
eter. A third-order term quadratic in the order parameter andies derived with Eq(2.4) can be related to those of thg
linear in the two other densities remains. model[24]. These relations are found by eliminating the sec-
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ondary densities, which is possible since they appear only upter correlation is related to a strongly divergéekponent
to second order. The coefficients of the remainitfymodel ) thermodynamic derivative, while the secondary densities
L L correspond to weakly divergeriexponenta) thermody-
B d o 2 LY namic derivatives. The relations for the plait point and the
H‘f’_f d X[E F 6000+ 5 [V ho) 1™+ 77 do() consolute point are presented in Appendix A. The momen-
(2.6)  tum density separates into a longitudinal comporjgix),
with the propertyV Xj,(x) =0, and an orthogonal transverse

are related to the parameters in £2.4) by componentj,(x), with Vj;(x)=0. Thus the quadratic mo-
e oo e s . oo o mentum density fluctuations in ER.4) may be written as
U=U—-3y,A 1y, F=7+%A 'h,. 2.7 P)=j2)+j4x).
A consequence of the reducibility of E.4) is that the
correlations of the secondary densitégsare related to order B. Dynamics
parameter corrglatlon fun.ctlons. Eor the expectation value gom generalized Poisson bracket relati¢2§] and the
and the two-point correlation function one gets dissipative properties of liquid mixtures in hydrodynamics
e o [26] a set of dynamic equations has been deri\&dwhich
(Goy=A"1(hq— %(%(ﬁé)), (2.8 allows the calculation of critical sound propagation effects. It

represents an extension of model [2], where only the
slow heat and concentration diffusion modes are included.

N T 1;2;2
<q0®qO>C_A +5q®5q<2¢02 ¢O>C' (29) The equations read

quAflf/q has been introduced in E(.9). The subscript  d¢o o _, 6H o, 6H H 6H
c in Eq. (2.9 denotes the cummulantaB).={apB) T_FV 5750+qu zqo_g( 0) EJF St 0y,
—(a)(B). Note that the correlations on the left-hand sides of (2.12
Egs.(2.8) and(2.9) are calculated with the static functional
containing Eq(2.4), while on the right-hand side E¢R.6) is
used. Therefore, the? correlations are functions af only. Ay > ,oH ¢ _oH , _ [6H H
All secondary density correlation functions in Eg.9) con- W:qu ?%J”\qv 5G 9(Vdo) PN
tain the same singular order parameter correlation function.
This correlation function may be eliminated in two of the o o S, . -
equations by inserting the third one. As a result, one gets two —(Cq+Gidot gqho)V En +0q, (213
relations between the background parameters
N Y2 Gl o, 0H or SH o SH o OH
an % a;p=ky, ax . a;p=k,. (2.10 i Y e qVv 6&0_9' V| ¢é¢ 56, —V{dodq 3G,

ki, k,, and the ratio of the tway couplings may be ex- . SoH SH

pressed by thermodynamic derivatives along the critical line +9(1—77[(V¢o) gﬁL(Vﬁo)T 3G }

comparing the corresponding thermodynamic relations. 0 0

These derivatives are smooth functions of the temperature, . ) ) ~S6H

finite at T, and therefore will be treated as constants in the _9(1_772k [ka E‘VU Siv 10, (2.14

critical region. Their connection to thermodynamic deriva-

tives is given in Appendix A. From the static functioridl4)

it follows that the secondary densiti§g have finite expec- Ji 5

tation values. In order to perform the perturbation expansion —=\V? R +§7’[(V¢o)
2 t

oH
S

_ . OH
(Vo) 5
it is convenient to introduce conjugated external fieﬁ@]sin SH SH
Eqg. (2.4). The values oﬁq are then adjusted to eliminate the —QTZ {jkV 5—.—ij 6_} +0,, (2.195
expectation values ofj,. Equation(2.8) implies that the K Ik Ik

conjugated external fields have to bg=y,(3¢3).
The Fourier transformed correlation functions of the den-where 7 is the projector to the direction of the transverse
sities at the wave vectd=0, momentum density. The static functiortdlis given by Eq.
(2.4). Assuming a Markovian process, the fluctuating forces

<aﬂ>cE<a,8>c(k=0)=J do((x) B(0))s [0,1"=(04,67,0,,0)) fullfill the Einstein relations

=f d%(Aa(x)AB(0))., (2.11) <[i](X,t)®[®j](x’,t’)>=2[Ai,-]6(t—t’)5(x—x’()2,.16)

with @, 8= ¢4,01,0,, are related to thermodynamic deriva-
tives containing the critical singularities. The order param-with the matrix
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. 0 (0) 0) 12
L] o v= K%—O)-FpTD(O)(%)( ) k++(j_'(|:');; . (2.29
—I'v? _Egvz 0 0 ’
. R At theoplait point the independent model Onsager coeffi-
| —LgVZ —A,V? 0 0 (217  cientsT, L, and & are related to the hydrodynamic coeffi-
0 —70\|V2 0 cients by
0 0 —\V? 1::%; E:;F(ﬁ_%Ql), 229

The Onsager coefficient vector and the Onsager coefficient

matrix in Egs.(2.12 and(2.13 are . RT y
. . p=z (a—zﬂQ1+ T Q%). (2.2
o, L °, oLy
Lq: o y Aq= ° o (2.1& .
Ly L, X\ At the consolute point one has
The mode coupling vectors and the mode coupling matrix o RTa o RT
introduced in Eqs(2.13 and(2.14 are defined as I'= o7 L= ra (B—aQy), (2.27)
o 0 o 0 o O O
o = o ol = o ol = o o RT ’y
€ C)’ 9 (gl)' %9 (O g)’ 219 r=z (?—Z,BQDL aQi)- (2.28

with the parametersé=RTp, §=RT/VNa and § |nine present model Eq&2.22—(2.24) are used in the non-
=RTQ,/{N,. The Onsager coefficients in the momentumyitical background indicated by0) at the thermodynamic
density equation$2.14 and(2.19 are related to the back- derivatives and hydrodynamic transport coefficients. In mode
ground values of the shear viscosigf®) and the bulk vis-  ¢oupling theorie$28,5] the same relations are extended into
cosity £ by A =RT({O+57?) and\;=RT5®. the critical region by replacing the background values by the
In hydrodynamics only three transport coefficients, thecorresponding fully divergent quantities.
thermal conductivityx;, the thermal diffusion coefficient
kt, and the mass diffusion coefficiebt appear in the equa-
tions for the entropy and the concentration. The hydrody- . ] ] ]
namic equation for the mass density is the continuity equa- Equations(2.8) and (2.9) are basic relations in the ex-
tion, which does not involve any dissipation. As a ter_ujed static modedR.4) becguse they show that.all singu-
consequence, only threé:,(f_, and j1) of the six Onsager larities in the extended static model are determined by the

coefficients in Eqs(2.12—(2.15 are independent. The re- singularities of thep* model. Therefore, these relations have
maining three coefficients result from the transformationto be invariant under renormalization, which means that they

(2.3 and they are determined by have to_bg vaI}d also for_the renormalized quantities. How-
ever, this implies a matrix structure of the renormalization

C AT s—2F At coefficients[23]. In order to avoid this matrix renormaliza-

Le==Qlh A=Qal Lip==Qal. (220 5 i convenient to introduce transformed secondary den-

Consequently, the fluctuating forces in E@.16 are not Sities m'=(ry,M,) where only one densityfor instance,
independent. Nevertheless, a dynamic functional analogou®2) is coupled to the order parameter, while the second den-
to [27] may be derived1]. sity appears only in quadratic order in the static functional.
The hydrodynamic Onsager CoefﬁciemSﬁ, andy de- This introduces densities ”orthogonal” and “parallel” to
termine the mass currenaind heat currerg as a function of the critical line. Whereas all quantities Corresponding to the

the temperature gradient and the chemical potential gradiemtncoupled density are considered along a path parallel to the
[26]: critical line and therefore are finitéconstant in the small

critical regior), the quantities corresponding to the remaining
i=—BVT—aVA, q—Ai=—yVT-TBVA. density are considered along a path perpendicular to the criti-
(2.21)  cal line containing critical singularitid9]. The new densi-
ties are introduced by a transformation
These coefficients are related to the hydrodynamic transport

C. Elimination of one static coupling y

coefficients b o oo - (M M
y m=Md, M =( H 12), (2.29
(0) M21 My
Jc
a=p|—| DO (2.22 . .
.V where the components of the matrix are determined by three
' conditions: (i) the nondiagonal coefficient of the Gaussian
KO [ ge\(© part in the transformed static functional has to yanﬁﬁhihe
B=pDO® L+(—> , (2.23 vy coupling of m; has to vanish, andiii) detM)=1. The
T al AP resulting matrix coefficients are
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Ky Ill. THEORETICAL RESULTS
M1=1, Moyp=—"o- 75—, -
‘ +( yl) ‘ A. General relations
A
Yy, 2 In order to identify the hydrodynamic transport coeffi-

cients one has to relate them to certain two-point vertex
Moo= Y1 M Moo 7’1 ka (2.30 functions, calculated within a perturbation expansion of the
2= Y, 22 12= Yo ky' ' dynamic functional given in Appendix B. We proceed as in
the case of pure liquidfl] considering the hydrodynamic
wherek; and k, have been introduced in Eq2.10. The determinantAy. The linearized hydrodynamic equations in
transformation matrix may be expressed by thermodynamimixtures readwe use the notation d26])
derivatives using Table VII. The explicit expressions de-
pending on the type of the critical point are listed in Appen- '9_‘7 DkT ( ) kr AL (‘9_0)
dix A. The transformed static functional obtained by insert- Jt T \oc T T/ o
ing Eq.(2.29 into Eq.(2.4) reads '

pT

]VzT

+D(aA> {kTJr(&C) v (ac) v2p
1, 1 e T c-l-p ,
H:f ddx[§r¢3(x)+§[v¢o(x)]2 lrpl T 1T e Plra
(3.
1 1 1,
+2 alml(x)+ a,m3(x)+ 5 aJJ (X)+ ¢o( ) sc Dk
_:_ 2 2 2
1. 2 - p V°T+DV<c— D(aP) V<P, (3.2
+ 5 Va0 B30 — hinfiia(x) (2.3)
J
The secondary densities are decoupled in 331); there- °_ -Vi, 3.3
fore, the corresponding correlation functions are simply de- dat
termined by
1 A _vps §+45)sz (3.4
o o o o r - Py ] .
<m1m1>°:a_1’ (mMymy).=0, (2.32 at 3
e 1,
o o 1 1 y 1 T2
(Mmymy)=v—=—| 1+ ALl < ¢0 b5 > , A p V. (3.5
I‘mzm2 ap az
(2.33

Equations3.1)—(3.5) include three diffusion modes and one
sound mode. Fourier transforming the above equations and

Wherelo" is a static two-point vertex function containin
MaMmy P g calculating the coefficient determinant to lowest ordemwof
only one- part|cle irreducible contributions. The second,q4 k2, one gets

equality in Eq.(2.33 follows from Eq.(2.9). From the ther-
modynamic expressions for the coefficients of the malvjx . 5 2 .y
the correlation functions, and the transformation mallix Ap=(Tlo+ DKI[ o = (D+Dc)iwk

the correspond?ng thermodynamic expressions of the trans- +DDTk4](w2—c§k2+ D4 wk?), (3.6)
formed correlation function§.32 and(2.33 can be calcu-

lated, which are also given explicitely in Appendix A for the . . i

plait point and the consolute point. The transformatipieg ~ With the diffusion coefficients defined as

leads to dynamic equations of the same structure as Egs.

(2.12—(2.19, but with transformed Onsager coefficients and 5 n 5 KT b,=D+ 2T Dkz (aA)
mode couplings =—, = ' =
upiing Cpt 7T pCpt € pChpe
b3 b b (3 7)
o, L -0 e, MLy % e
Ln=| s |=MLg, Ap= s | =MAMY, ) , i .
|:¢ E X whereCp.=T(da/dT), p is the isobaric specific heat at con-
12

(2.34 stant concentrationD and D are two different types of

thermal diffusion coefficientdD; denotes the thermal diffu-

. o . R sion at mass flow zerd £0), wheread . denotes it at zero
5,:(9'1) —MG,, G.= ( du ?12> AR concentration gradient{c=0). The sound velocitye and

92 ' 921 922 235 the sound diffusion coefficierd in the sound mode are
o P
o C <o 2|
Cm=(é:)=Mcq. (2.36 Cs (&ﬁ))”, (3.8
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Ds=£ “f; . 1 1 ) Kt c(t,0)=RgC3(t,w) —iwDy(t,0)], (3.18
p 3 Cve Cpc/ p 1
. D &P) aA (ap) +<ap) k]2 Ds(t,w)=—;lm[Cﬁ(t,w)—ist(t,w)]- (3.19
o Lap oot 9C g p VAo \a] o T |

These two quantities determine the experimentally observed

(3.9 sound attenuation(t,w),
with the isochoric specific hed@y .=T(da/dT). ,. Equa- 02D(t,w)
tion (3.6) has to be compared with the determinant of the ay(t,w)= ET TR (3.20
dynamical two-point vertex function of the model equations cs(tw)
in the hydrodynamic limit §—0, k—0) keeping the lowest . . .
orders in the frequency and the wave vector. We defer th;:rhe frequency-dependent shear viscosity
definitions of these vertex functions to Appendix B. How- 7(t,0)=pDy(t,w) (3.21)

ever, it should be mentioned that the structure of the expres-

sions obtained is the same at the plait point and at the corfellows from Egs.(3.7) and (3.15 and is complex at finite
solute point and that it is invariant under the transformationfrequencies. The hydrodynamic transport coefficients, which
of the secondary densities frogy to My [Eq. (2.29]. Cal-  concern the slow heat and diffusion mode, will be calculated
culating the determinant of the matriB17), one gets the at zero frequency. In this case E¢3.13 and(3.14 reduce

following structure, which is quite similar to E¢3.6):
Ap=(—io+Dk?)[—w?— (D' +D")iwk?
+ D' D'k*(w?—C2k%+ Dg wk?). (3.10

The difference is that the coefficients in E§.10), obtained

by collecting contributions of the corresponding powers in

and o, are now complex quantities in general. One has

C2=—[G2]"[G,], (3.11
. [GalTF.allG.]
D=fit , 3.1
" [GA]G,] 342
° T
D+ D' =THF,z]— Ca) [Eaa][Ga], (3.13

[Gal'[Gl

° o o é’& T Iozaa 2 éa
D’ ,,Z‘FaaTr[Eaa]_HF—’_[ ]O[_T ;l [ ]
[Gal [Ge.l

(3.19
(3.19

In Eq. (3.19 the quantities%—‘a;k and f[F are defined by

Dt: f{{ .

[Ga]TF.21[Gu]

Fua=THF .l fg5- . (316
[G2]"[G.]
e =TrF2 + detF 2~ F1F ... (3.17

The vectors{éa],[éa] and the matri>{li:a—;,] are introduced
in Egs. (B17)—(B20). Analogously to pure fluidg1], the

to real expressions and one may write

° S .
D“>+Dcﬂ>=[TdEaa}—Lgﬁliiﬂéﬁidl |
0=0

[GalGa] )
(3.22
D(1)De(t) = FoaTHF ozl TT
O~ T o ~ 2 o
+[GQL[ESQJ[GQ]] a2
[GalT6. .,

All equations considered so far in this section are indepen-
dent of the type of critical point, which means that expres-
sions (3.18—(3.23 are valid at the plait point and at the
consolute point. We would also like to mention that similar
structures appear in other models with several secondary
densities, such a#He-*He mixtures near the superfluid tran-
sition or magnetic liquids.

B. Specific relations for the consolute and plait point

In order to obtain explicit expressions for the slow hydro-
dynamic transport coefficients, the thermal conductiwity,
the thermal diffusion ratid;, and the mass diffusion coef-
ficient D, one needs a third equation in addition to Egs.
(3.22 and (3.23. The zeroth order of the dynamic order

parameter vertex functioﬁf:; appears in the Gaussian part

of the dynamic functional. From the hydrodynamic equations
(3.1)—(3.3) one can derive a corresponding equation for the
order parameter from the definitioi2.1)—(2.3), where the
coefficient of V2¢, appears in the Gaussian part of a corre-
sponding “hydrodynamic” functional. Identifying these two
Gaussian parts leads to the third equation. This identification
can be extended to any order of perturbation expansion since

temperature- and frequency-dependent sound velocitshe critical asymptotic behavior of the hydrodynamic trans-

cs(t,w) and sound diffusion coefficiem(t, ) are obtained
by comparing the dispersion relation?=(c2+iwDg)k?
from Eq. (3.6) with w?=(C2+iwDy)k? from Eq. (3.10.
From the real and imaginary parts we get

port coefficients and the thermodynamic derivatives appear-
ing in the relation reproduce the correct asymptotic behavior
of the vertex function. As the order parameter corresponds to
different densities at the plait point and at the consolute
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point, respectively, the order parameter vertex function is

related to different expressions in the hydrodynamic trans- . ° _ ° - [Gz]"[F.z]’[G.]
0 o Waa=Foialf g3~ TIE )+~ .

port coefficients. At the plait point the relation reads [éa]T[éa]
3.2
do A ke(t) [dc 2 329
T ] PDT(t)+ % ) PD(t) T o7 o At the consolute point the thermal diffusion ratio is given by
ke(t) 1 \/(aa) (&c) o
da| == |57 |5x] Weale-o (329
I ~ aalw=0" .

(ﬁT)Ap%'w—O’ (324 T D) VIaT/ \oAl

The expression for the thermal conductivity, which follows

while at the consolute point one simply has immediately from Eq(3.23), is the same for both the plait

D(t)=%¢};,| o (3.29 point and the consolute point. We get
t 1 . 0 o
From Egs.(3.22, (3.23, and(3.24), or Eq.(3.25, respec- KTEI_) = 5757 [Failu=of 63l w0 Waalu=ol. (3.30
tively, the temperature-dependent hydrodynamic transport P (t)

coefficients can be extracted. The mass diffusion and th

thermal diffusion ratio at the plait point are fve note that the expressions for the hydrodynamic coeffi-

cients(3.26), (3.27), and(3.30 for the plait point or(3.29,

9A 9 . (3.29, and (3.30 for the consolute point are the same for
D(t)= ( ) [(-) Foalw=o both the static functiondR.4) with the secondary densities
Jc JA TP and the transformed function&2.31) with the secondary
Je I . densitiesm. The same property holds for the sound velocity
+ (_) (_) ¢¢|w o (3.18 and the sound diffusion coefficief®.19. The reason
o), o\ IT), for this is that all terms appearing in Eq8.11)—(3.15),
from which the transport coefficients have been calculated,
) 3_0) \/( ‘9_") (‘7_0) W - are invariant under the transformati¢®29.
aalw=0{ 1
9o/ p IT) s p\0A) b

C. Critical sound velocity and sound attenuation

3.2
(326 In order to decouple the fast sound mode from the slow
kr(t) 1 [(ac) : . heat and mass diffusion modes the dynamical model will be
D) $dlw=0

T - D(D) o7 considered in the limi€ — o [Eq. (2.19]. This limit ensures
AP that the sound mode is no critical mode. Otherwise the dy-
N
(3.27 used. Explicit expressions for both cases are presented in
Appendix C. Inserting expression€7)—(C10 into Egs.

pe ac . ac namical model could not be renormalized. In the liroit
aa|w 0
P
where we have introduced the combination (C3) and(C4), the complex function§§ and D simplify to

— — W~ —| = —oo the explicit appearance of vertex functions in the trans-
IT)yp\9A], IT s p port coefficients differs depending on the secondary densities

Ci(t,w)=aj[a; e+ 5 m m, ()], (3.31)

alcl,u+2alclc21’m m, (w)L+c2 mom, (w))\

Di(t,0)="i(w) + (332
a,i+ C2Fm2m2( w)
|
oThe perturpation theory only contributes to the functions lim Cg(t,w)zcg(t)' lim Dy(t,w)=Dg(t), (3.33
fii(w) andl“mzmz(w). At zero frequency the vertex function ©—0 ©—0

I'm,m,(@) reduces to the static vertex function introduced 'nwherec andD have been given in Eq€3.8) and(3.9). The
Eqg. (2 33 and both quantities turn into real functions. Irlsert'thermodynamlc expressions at the plait point as well as the
ing the definition of the transformed parameters, the backcorresponding expressions at the consolute point lead to the
ground identification of the Onsager coefficients, and thesame result.
thermodynamic expression for the static vertex function, So far we have expressed the hydrodynamic transport co-
Egs. (3.31) and (3.32 reduce to the correct hydrodynamic efficients and the sound velocity and sound diffusion by un-
coefficients renormalized vertex functions of the dynamical model.
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These contain singularities that have to be removed by renor- (= («l )72;

malization. Expressing the unrenormalized quantities by ’

renormalized ones, the critical temperature dependence is ob- R . 1 1 dx

tained. The procedure is equal to the pure fluid case. How- L(I):(K|)1L2¢l’2ex;1(— f — §¢>_ (3.38
ever, the static functional for mixture®.31) contains an 2 J1 X

additional densitym,. It appears only in Gaussian order,
thus no perturbational contributions leading to new dimen
sional singularities contribute to the corresponding verte
functions and it does not need any new renormalization fac-
tor. Thus all static renormalization factors are the same as in I dx
pure fluids. From EqgC7) and(C10) it can be seen that the r(|):z;1ex% f — gd,)r(d)(l), (3.39
dynamic perturbation theory does not contribute to the On- 1 X

sager coefficients:,L and the couplingt; that appear in d i .

additional to the pure fluid case in the dynamics of mixtureswherer( (1) satisfies the equation
Also, in dynamics no new independent renormalization is dr@
needed. The whole renormalization procedure in the current I di
model concerningp, andm, is equal to the procedure for
the densitiespy andqg in pure fluids, which has been exten- Inserting Egs.(3.38 and (3.39 into Eq. (3.37), the time
sively described ifi1]. For this reason it will not be repeated ¢ aie ratio can be rewritten as '

in this context. A short summary of the definitions of the

The solution of Eq(D16) for the order parameter Onsager
oefficient can be separated into a static and a dynamic part.
e can write

—T@d pE(1)= (z%d))*llo“_ (3.40

renormalization coefficients and the correspondihfunc- 2,

tions is given in Appendix Oof course the notation has been wi()= —— (3.41)
3 X - :

accommodated to the current condext D

Inserting the renormalized functions and parameters in
Egs. (3.31) and (3.32 is particularly easy since Eq$C3) From Egs.(D14), (D19), (D15), and(D20) the renormalized
and (C4) contain no explicit renormalization factors. There- couplingsc,(l) andc,(l) read
fore, the unrenormalized vertex function may be immedi- .
ately replaced by their renormalized counterparts. Because Ci('):(Kl)fsci
the separation of the unrenormalized vertex functi@®l)

into static and dynamic parts is also valid for the renormal- 208 69251 Idx
ized counterparts, one gets ca(D=(«l) CZZmz ex 1 X Cm, |- (3.42
Ca(t, )= (k1)®ay[a,ci(1) + 51Ty m, (@ (t,1),W(1))], The renormalized Onsager coefficients appearing in Egs.

(3.39 (3.39 and (3.39 can be obtained analogously from Egs.
(D14), (D19), (D12), and(D16). One gets

2% = (Kl)gai 2.2,
Dy(t,w)=(«l) fﬁ(v(t,l),W(l))JrCz(t ) [aici(Du(l) - R I dx
2t (D)= (k)™ xzmzexp( L ngz), (3.43
+2a;¢4(l)cy(l)
X Ty, (0 (8,1, W(1))Lyof 1) L (-2 712y £ [ 9%
UG R 1) = (k) "Lz, ex 2 ), x Im, |- (3.49
+ 3D T m, @ (D), WIDA(D)]. (3.39

The amplitude functio@mzmz(v(l),W(l)) in Egs.(3.34 and
k is a reference wave number that is usually identified by(3.35 has the general structure
K= 551, whereé, is the critical correlation length amplitude.

The parameters andWw are analogously defined as in the Ly, 0 (D),W(1)=a,[1= ()G, (1), W(1))]
case of pure liquids, (3.4H
E2(1) 1) and reduces in the zero-frequency limit to

v(t,h="—%, W)= — 7 Z- . A
w—0

The pa_lrame_tew now contains an additional time scale ratio =a,[1— ¥ )G(f>(y2(|),u(|))],
ws. It is defined as
(3.4

L2(1) )
2 ( (3.37 Wherel“ETfim2 is the corresponding static function. The func-

Ws(l):—l“(l),&(l)' . ne . .
tions G, and GY’, respectively, accumulate the contribu-
From the flow equations given in E¢D19) we can imme- tions of the perturbation expansion. The static couphng
diately write always enters witla, as a reduced coupling
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2
2_Ym
a,’

y (3.4

which will be used in the following. The functions, is
related to the functiofr , by

Fy@(),w(l))
1+92(DF (1), w(l))’

G (M, W)= (3.48
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for the Onsager coefficier, .

The theoretical expressions for the sound velocity and the
sound attenuation are obtained by inserting E§51) and
(3.52 into Egs.(3.18 and(3.19. The last step remaining is
the specification of a relation known as the “matching con-
dition,” which connects the flow parameter | with the re-
duced temperaturteand frequency. Functions of | turn into
functions oft and w. The relation will be chosen in such a
way as to guarantee finite-amplitude functions in the critical

which is the amplitude function of the corresponding corre-limits t—0 andw— 0. A further condition is that the relation

lation  function. The dynamic vertex
szmz(v(l),Vv(I)) can then be expressed By, (v(1),w(l))
analogously to the static cafsee Eq(D9)]

Lm0 (1), W(1))= 1+ y2(F, w(),w(D))

The Z factor and the exponential function in Eq8.42-
(3.44) can be replaced by static functions. From Hg) we

get
Z_l F{J’I dX g F(nfimz(fiz,?}/z,tl)
ex — == :
M2 1x e F(n?;mz()’z(”,u('))

. (3.49

(3.50

function reduces to the well known static matching condition

£2(1)
(K|)2 = (356)

in the limit «— 0. Because the structure of the perturbation
expansion is the same as in pure fluids, we can choose the
matching condition at finite frequencies

(52(0

2(K|)z

2 1
+iw(l)|=—. (3.57
4
The only difference from the corresponding relation in pure

fluids [1] is the appearance af, which includes the addi-
tional time scale ratiow;, instead ofw. Of course this

Because the unrenormalized static vertex functions are r
lated to thermodynamics, which is shown in Appendix A,
they may be replaced by thermodynamic derivatives. Th
amplitude function in the denominator of E§.50 has to be

calculated in perturbation expansion. Inserting the relations

%atching condition coincides with the relati¢®.56) at zero
frequency as discussed before. Inserting the defin{oB6)
fnto Eq.(3.57) we get

(3.42—(3.50 into Egs.(3.34 and(3.35 we get

C(t,0) = ay[ ;& + EL(n, Vi@ (1), W), (3.5

Dy(t,0)=(x1)?Fi (1), W(1))
a;

_|._ [ S
Ci(t,w)

202% o o s
{afcip+ 2a1C1C2F£n;m2

X V(v (1), W(1))L 1,

° o _ 3
+ E5[ T, Vs (1), W(1))1°\}. (3.52
In order to shorten the notation we have introduced

AR W)
ST OE e w53

Ve(v (1), w(l))

2
£+ <|>]> =(&™)°% (358

w
r(H[1—w;

In Eq. (3.58 we have also inserted the standard identification
for the reference wave number= &, *. Equation(3.58 rep-
resents an implicit equation for the flow parameter
=I(t,w). The critical limitt— 0, which impliesé~1(t)—0,
corresponds now to a finite flow parameter vaiy(e) tend-

ing to zero at vanishing frequency.

The asymptotic critical temperature behavior of the sound
velocity and the sound attenuation is obtained by considering
the limit «—0 in Egs. (3.51) and (3.52. In this limit
Vs=1 andC? and D; turn into real quantities. From Egs.
(3.18 and(3.51) we get immediately

° ° o (7P
c§<t,w:o>=c§<t,w=0>=aj[a1c%+C§F(n?imzl:(5) :
a.p

(3.’59)

The first part on the right-hand side in E®.52 describes o ) ] ]

the contribution of viscosities to the sound attenuation. Thelhe last equality in Eq(3.59) is obtained using the thermo-
dynamic amplitude function of the longitudinal momentum dynamic expression for the vertex function, which is given in
density is Appendix A, and the definitions of the parameters at the plait

A point or at the consolute point, respectively. Because the
fir(),w(h)=a\(D[1+E @(),wW(1)]. (3.54

thermodynamic derivative in Eq3.59 is finite at T, [29],
the sound velocity stays finite also in the critical limit, which
The functionE, collects the contributions due to perturbation is in contrast to pure fluids where the sound velocity van-
expansion. From the flow equatid®18) follows the solu- ishes proportional ta*? in the asymptotic region. As the
tion imaginary part ofC§ vanishes at zero frequency the limit
. ! dx w—0 has to_be p(_arformed c_arefully in E(.19 to obtain
)\|=(K|)_2)\|Z{16Xr{ f — ¢ ) the asymptotic critical behavior @s. We have to calculate
! (D the expression

(3.59
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Im[C(t,
Du(tw=0)=— fim T b))

w—0

+Dy(t,w=0).
(3.60

An explicit calculation of this limit leads to

3T Y2 (DREF(0)]

PO S WA (DT L+ P F ()]
+Dy(t,w=0), (3.6
where we have defined
A N CIO R
F+(0)—llin0 T (362

The static vertex functionﬁﬁﬁim2 is proportional to a thermo-
dynamic derivative(see Appendix A which tends to zero

proportional tot* in the critical regime. The flow parameter

I is related to the reduced temperature by E357), leading

to | ~t” in the asymptotic region at zero frequency. Thus the

asymptotic critical behavior of the Onsager coefficiErfol-

lows from Eqgs.(3.39 and(3.40 by inserting the fixed point
values {=—7 and {D*=—x,. This leads to an
asymptotic behaviol (t)~t~*(7**)_ All other parameters
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where all contributions of the perturbation expansion are col-
lected in the complex functiok,. The flow of the Onsager
coefficient\, is determined by the flow equatid®18). The
solution of this equation is

00 g , dx
Ne(D)=(xl) MZ) €x [1 < O 4.3
The asymptotic behavior of E€4.3) is obtained by inserting
the fixed point valuq;t= —X,, leading tox(1)~1"*7 in the
asymptotic region. At zero frequency the shear viscosity
turns into the real quantity

_ 1
7(t,0=0)= aT (kD2\M(D[1+E(l,0=0)], (4.9

where a;=1/RTp. The real function E(l,0=0)
=E(fi(1),w3(1)) depends on the time scale ratio introduced
in Eq. (3.37 and the mode coupling paramefgr, which is
defined as

g?(1)

2 _
=

4.5

At zero frequency the flow parameter is simply connected to
the reduced temperature by the relati@®66). Thus we im-
mediately obtain with Eqs(4.3) and (4.4) the asymptotic

in Eq. (3.61) stay finite at the critical temperature. The tem- behavior of the shear viscosity as
perature behavior of the sound diffusion coefficient in the

symptotic region is therefore

D(t,w=0)~t "¢, (3.63

z=4—n—x,,

7(t,w=0)~t""%n, (4.6)

which is the same as in pure fluids. Differences between pure
fluids and mixtures arise in the amplitude functi®n which

which is the same as in pure fluids. The asymptotic diveris now also a function of the time scale ratig (see Table
gence in Eq(3.63 is completely contained in the first term X). The Onsager coefficient;(I) may be replaced by the

of Eq. (3.61). The second ternDy(t,w=0) involves only
subleading divergences. Inserting E8.63 into the experi-

mode coupling parametdt and the Onsager coefficieht
using Eq.(4.5). The coefficienig(l) is simply given by

mentally observed sound attenuation introduced in Eq.

(3.20, we get

2tfzv+a, (364)

al(t,w)~w

which is now the same behavior as that of the sound diffu
sion coefficient. In pure fluids the behavior of the sound

attenuation is ag~w’t 2"~ %2 The difference in the

asymptotic behavior is caused by the different critical behav-

ior of the sound velocity in pure fluids and mixtures.

IV. COMPARISON WITH EXPERIMENT
A. Shear viscosity at the plait and consolute point
From Egs.(3.15 and (3.21) we obtain for the complex
shear viscosity

atw)=pfg. 4.1

RT
g(|)=(KI)_<1+E/2)A(1,/2 '
Na

(4.7)

where we have used E€D11) and the definition o in the

text below Eq.(2.19. Inserting in Eq.(4.5), the Onsager
coefficient may be written as

2
(D)= (k)" CToA, N (RT) 4.8
A

NOIHON

The expression for the shear viscosity does not contain any
thermodynamic derivative. The temperature behavior is de-
termined by the flow of the dynamic paramet&s$), f(l),
andws(l) and a simple | power. This makes the shear vis-
cosity a suitable quantity for a comparison with experimental
data to determine the initial valué¥l,), f;(Iy), andw;(lg)

of the dynamic flow. With Egs.4.4 and (4.8 and |

.. . — -1 : H
Because the momentum densities do not renormalize, thg oé ~(1) the shear viscosity reads

dynamic vertex function in Eq4.1) can be written as

o

ft}=aj(KI)2)\t(l)[1+Et(I,w)], 4.2

AGRT
Na

1+ Eo(F(t),wz(t))
INOIRD)

n(t)= £(t) (4.9
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TABLE I. Experimental values of, and the critical tempera- TABLE II. Initial temperature and corresponding values of the
ture and density in several mixtures. Thde-*He parameters are dynamic parameters found from a fit of the shear viscosity in sev-
taken from[32]. The values for the aniline-cyclohexane mixture eral mixtures.
have been taken frofb7] and[46].

PP cpP
PP cp *HeHe A-C
*HeHe A-C Parameter X=08 X=065 X=048 X.=0.44
Value X=0.8 X=0.66 X=04% X.,=0.44
0 0.07 0.07 0.07 0.03
& (cm) 25x10°8 24x108 23x10% 2.45<10°8 1018 (t) (cms) 1.70 1.31 1.11 5.35
T (K) 3.715 3.976 4.37 303.0 f(to) 0.430 0.486 0.516 1.075
pe (glen?)  0.04788 0.05228 0.0576 0.857 Ws(to) 0.819 0.784 0.767 0.897

At this mole fraction the values are obtained by interpolating the?at this mole fraction the initial values have been found from inter-
corresponding parameters betweéns 0.66 andX=0 (*He). polated data.

The temperature flow of the dynamic parametefs), f(t),  This equation is written ati=3 (e=1), where we have

andws(t) is obtained from the flow equations in Appendix As=1/47. In this case the flow equatiorid.10—(4.12) re-
D. Inserting the matching conditiof8.56, we obtain from 4, ce to

Egs.(D16), (D21), and(D22)

dr dr _ 14 f2
G- 0EOrmE ), 410 tar T T TR, (419
dw; 1 d 3
Go 7 £ 0EOwOdY, @1 t 2= 2w, (4.1
O OE ORI g0+, 2. (412 df __» 3 2 A0
dt 2 t taz—zft(t) 1_th(t)_24[1——W:2;(t)] .
&' =dé&/dt is the derivative of the correlation length. Equa- (4.17

tion (4.9), together with Eqs(4.10—(4.12), constitutes an
exact expression for the shear viscosity in liquid mixtures afl he initial valued’(to), fi(tog), andws(ty) at some tempera-
the plait point as well as at the consolute point. The ampliture distancet, can now be obtained fitting experimental
tude functionE; and the{ functions may be inserted in any shear viscosity data with E¢4.14) in a restricted tempera-
order of a loop expansion. Further, an explicit expression foture region as shown in Fig. 1. Since the datatfod0™* are
the correlation length is necessary, which basically could baffected by gravitation, these data were excluded from the fit.
calculated also in a loop expansion as a function of the couThe resulting initial values are listed in Table Il féile-*He
pling u within the ¢* model. However, for a comparison mixtures at the plait point and aniline-cyclohexane mixtures
with experiments it is more useful to replace the theoreticaht the consolute point. If'He-*He mixtures no measurements
correlation function by a function that includes experimentalof the shear viscosity aX=0.45 have been performed. In
information. An obvious simple expression for the correla-order to compare the results of our model with the experi-
tion length is mentally measured sound velocity and attenuation at a mole
fraction X=0.45[30], we have generated a set pfdata at
§)=&pt &0t (413 this mole fraction from theX=0.65 andX=0 data by inter-
polation. The procedure is justified by the simply shifted

with »=0.63. Equatior(4.13 Qescribes a Eorrelation length curves at different mole fractions. The fit resuldat 0.45 is
that turns from the asymptotic behaviést ™" nearT; to a

. also shown in Fig. 1 and the corresponding initial values are
background valug, far away from the critical temperature: listed in Table I, where one can see that the valueX at

& has been determined experimentally in several liquid MiX-_ 4 45 continue the behavior at=0.8 andX=0.65 as a
tures, while in contrast no experimental information aboutfun(':tion of the mole fraction ' '

the background values is available.

Therefore, we restrict the expression for the correlation[hr
length to the asymptotic forré,=0 of Eq.(4.13 for subse-
guent calculationgésee Table | for specific valugdnserting
the one-loop expression of the amplitude functi®&nfrom

The flow of I, f,, andws in *He-*He mixtures for the
ee mole fractions is shown in Fig. 2. For comparison we
have also plotted the flows for the pure fluids taken fidm

Table X in Appendix D and the correlation functi¢a.13 B. Critical sound propagation at plait points
into Eq. (4.9 we obtain The sound velocity and the sound attenuation are deter-
) mined by Eqs(3.5)), (3.52, and(3.18—(3.20. Analogous
(t)= RT& _ fe(®) to pure fluids, the critical contributions due to the shear vis-
7 ANt T (1) FE(t) 3 1—ws(t)]) cosity, the thermal conductivity, the mass diffusion, and the

(4.149  thermal diffusion ratio are small compared to the leading part
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FIG. 1. Shear viscosity fofHe-*He mixtures at the plait point FIG. 2. Flow of the dynamical parameters found from the fit of

and aniline-cyclohexane at the consolute point. The experimentdhe shear viscosity.

data(squares and triangleare taken froni58] (*He-*He) and[59]

(aniline-cyclohexane The fit results are represented as lines. TheThe thermodynamic expressions for the static vertex func-
curve atX=0.45 has been found by fitting the interpolated data'tionsa1=<r°nlﬁ11>c_1 andFSﬁ;m2=<r°nzr°nz>;1 can be obtained

The *He*He data fort<10 * deviate from asymptotics due to . :
gravitational effects. immediately from Eqs(A3) and (A4).

In mixtures theT, value of the sound velocity is finite
because it is related to the inverse of the adiabatic compress-
ibility at fixed concentration, which does not diverge in the

of the complex sound velocitys. These contributions are all |imit t— 0. Within the model the zero-frequency sound ve-
in;('jl}tded ;ﬂpi and W”tl be nelgleckted indthelfollowing. In" locity may be written ag?(t,0)=c2.+c(t), where theT,
addition, this term contains a background value appearing i i ois Qi — 5.9 82

the sound attenuation. Therefore, t%e sound attenﬁgtion g?vé}é’?lue_of ot?ae(s)sound VelOCItY 'S QIVEN D5c™a;81C1 and

. ) . (t)y=a;csI’ . At the plait point the critical value of the
in the equations below goes to zero in the background. Undef® 1727 mym, i _
these circumstances an analysis of experimental data will b&ound velocity is small compared ¢g(t) in the experimen-

performed with tally accessible region. This can be seen from experiments in
. 3He*He mixtures[30]. Hence we will neglect it in the fol-
ca(t,w)=ay{a; i+l n RE Vsl (1), W)}, lowing. The sound velocity ab=0 [Eq. (3.59] can be writ-

(4.18  ten approximately as

1 090 ~
D(t,w)=—— & {5 i, IMLVs( (1), W(1)T}- cg(t,0)=(£) =c2(1) =aj&§1°“§§;m2. (4.2
4.19

o,C

From Eq.(2.36) and the definition of the transformation ma- ; CR(S) /0 o\~
L . o o The static vertex functiod’ =(m,m is related b
trix in Table IX it follows that the parameters; andc, at M2Mz {mams)c y

the plait point are Eq. (A4) to thermodynamic qu_antities, all of which ha\{e_ not
been measured so far. Equati@h2]) offers the possibility
to calculate the vertex function approximately from the zero-
. RT/oP . RTp [ac frequency sound velocity. Because the sound velocity
G=" (TA) » =Y (ﬁ_A) . (420 ¢ (t,w) at finite frequency runs intey(t,0) in the back-
o Te 7 Te o Te ground, the background behavior af(t,w) can be used to
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find a numerical expression for the zero-frequency sound ve- 1 (P _
locity and the adiabatic compressibility, respectively, when Dy(t,w)=—-— (5) Im[Vs( (1), w(1))]. (4.23
measurements afy(t,0) are not available. With Eq4.21) o.c

the expressioné4.18 and (4.19 may be simplified to For a numeric calculation of the complex functivgdefined

9P in Eq. (3.53, it is necessary to determine the static coupling
cg(t,w)z<a—> Re V(v (1),w(1))], (4.22 ¥2(t). This can be done analogously to pure fluid$ and
Pl ge “He or 3He-*He mixtures at thex point[24,23 with

(2—- §¢2)Ag(t)
By2—[2¢ 42— €+(2—{42)Ag (1) IF P (u)—ug dFP/du’

YA ()= (4.24)

The static functions appearing in E¢4.24 are defined the critical value of the sound velocity. The fit results for the
in Appendix D. The one-loop expressions are listed in Ap-remaining parameters are listed in Table IIl.

pendix E. In addition, we have introduced tljefunction The background data calculated from the zero-frequency
{p2={— L, In EQ. (4.29. Ag (t) is the logarithmic deriva- sound velocity and the corresponding fit curves are shown in
tive of them, correlation function Fig. 3. The curve aX=0.65 is obtained from “data” that
. have been calculated by interpolation of the sound velocity
d In(Fn m ) dIn Fﬁ)m betweenX=0.45 andX=0.8. As stated also in Sec. IV A,
+ 21112/¢ 2 . . . . .
Ay (t)y=— = (4.25 the reason for this step is that the shear viscosity from which

dint dint the initial values of the dynamic parameters are determined

has only been measuredX#t 0.65 andX=0.8. Analogously
to the shear viscosity, a concentration variation mainly

dq1 ap ) LA B AR ALY B A ALY B |
N 5p e ®*He-"He mixture
(4.26 :

dint

With the approximation(4.21), this expression reduces to

+ [ —
Bo (= *He (X=1)

In *He-*He mixtures the sound velocity has been measured
at mole fractions {He) X=0.45 andX=0.8 at 1 MHz[30].

For both mole fractions the background datiae tempera-
ture interval 0.005:t<0.1 atX=0.45 and 0.003t<0.1 at
X=0.8) are used to determine experimental values of
(9p/9P) ., which are then fitted with the expression

(4.27

ap\ . 1+Bt?
) A R (T R

with «=0.11 andA =0.54. With the expressiot4.27) we
obtain a representation of the compressibilitycgft,0), re-
spectively, in the experimentally accessible region. It can
show a divergentlike behavior with the exponenin a re-
stricted temperature region and then, at some tempergture
it crosses over to a finite value &t 0. Because the back-
ground data of the sound velocity do not contain any infor-
mation about the crossover temperattire we will sett,
=0 in the following, which is consistent with the neglect of ) R TP TN SN
10° 10* 10° 107 10"
TABLE IIl. Fit results for the adiabatic compressibility at fixed t
concentration at several mole fractions.

FIG. 3. Fits of the adiabatic compressibility at fixed concentra-

Parameter X=0.45 X=0.66 X=0.8 tion. The squares and triangles are calculated from the measured
sound velocity in the backgroun®0]. The fit results are repre-
A g 1.10X 1075 1171075 1.22x10°5 _sented by the lines. Thl{=_ 0.66 curve is obtgined by fitting the
cnr Torr interpolated data. The static coupling&(t) at different mole frac-
B, —0.653 -0.617 —0.592 tions have been calculated from E4.24). For Ay(t) defined in Eq.

(4.25 the fits of the adiabatic compressibility have been used.
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causes a parallel shift of the sound velocity curves, while the 120 ———
structure of the curves nearly remains unchanged, as can be " w0 B f=1MHz *He-"He mixture
seen in[30]. The static coupling/?(t) obtained with expres- 10 A {=3MHz K
sions(4.24) and(4.29 is plotted in Fig. 3 at different mole [ X=0.45 ¢ f=1MHz e
fractions. The couplingi(t) is nearly a constant in the con- 100 | X=0'45&d<’ =
sidered temperature region. Therefore, we have inserted the &' b 1
fixed point valueu*/4!=0.0405 in Eq.(4.24). . E 9 avbz  MHz &60 .
In Egs.(4.22 and(4.23 the flow parameter=1(t,w) is 0 5%
determined by the matching conditi¢®.58 as a function of O’ 80k __olo 0/l 0000 2 X=0.8 ]
the reduced temperature and frequency. At each fixed fre- '_1,~’
quency Eq(3.59 defines a flow parameté(t) correspond- nr - T
ing to an effective reduced temperaturi this value of | is [ _/.’.".‘... o “___.IOMF_'Z_ o X
inserted into the static matching conditi¢®.56). Thus, at A AL B A |
0=0, t=t. A certain value of the flow parameter corre- 1o o= —Xx=08 ]
sponds to different effective reduced temperatures depending R 2\ X=0.66 |
on the frequency. In other words, E(B.59 connects the osk  OIN N\ T X=0.45 |
temperature scale at=_0, at which all functions are known
from experiments to a temperature scale at finite frequency. 0.6 —
Equation(3.58 can be rewritten as 8 sl X08 o v ]
2 I
B+ | —=——m—] =¢8 , 02 o f=1MHz -

¢ (F(t)[l—wg(t)]) A X=045 + {=3MHz . ]

0.0 | ® {=5MHz SN ol
where we have used the matching condition at zero fre- T el
guency on the right-hand side. With the correlation length 10° 107 10° 10* 10"
(4.13 (¢,=0), the matching condition reads t

( 2wé )2 _ FIG. 4. Sound velocitycs and sound attenuation in one wave-
8| ————————| =t8. (4.29 length «, at several mole fractions and different frequencies. The
F(t)[l_Wg(t)] 0-MHz curves forcg are determined from the experimental sound

. . . ) velocity data in the background. The sound velocity curves at 1
Using the solutions of the flow equatiot%.15—(4.17 with  MHz and 3 MHz have been calculated without any adjustable pa-
initial values found from the V|SCOS|ty fits in Sec. IV A, we rameter. The 1-MHz curves fo)\ are normalized to 1. The same

may now calculate for each temperatti@ finite frequency  normalization factor is used at all other frequencies. Apart from this
the corresponding reduced temperatui@® «=0 obtaining  one normalization factor, the sound attenuation curves do not in-
the functiont(t,») from Eq. (4.29. The corresponding ex- clude any adjustable parameter. The data have been collected from
pressiong4.22 and(4.23 turn into [30].

parameters remain in the sound velocity and sound attenua-
tion. The results for the sound velocity at the frequendies
=1 MHz andf =3 MHz are in good agreement with the cor-
1/{9P\ _ L responding experimental data as shown in Fig. 4.
D(t,w)=—— (a—> (O Im{ Vo (t,t),w(t)]}. (4.3D The sound attenuation itHe-*He mixtures at mole frac-
@\ tion X=0.8, X=0.65, andX=0.45 is shown in Fig. 4. In-
stead ofa defined in Eq.(3.20 we have plotted the sound
attenuation in one wavelengif, = oA =2wacs/w, which
is in our theory given by

) P\ — B
Ccs(t,w)= s (ORe[VJo(t,t),w(t)]},  (4.30

From Eq.(3.53 we get

o LHPAOFP)
N N IR

(4.32 IM[C3(t,w)]

— T m (434)

a)\(t,(l)):
Introducing the properties of the matching condition into the

arameters andw defined in Eq(3.36), we obtain ) ) )
P a(3.39 Inserting the approximate expressidds30 and (4.31), the

_ £ . W& (1) sound attenuation in one wavelength reads
U(t,t):?, W(t)zzr_—z_ (433 . . .
£ (1w SRR 0 A COBLIC0))
The critical sound velocity ifHe-*He mixtures is plotted M 1+ Y2()ReF, [v(t,t), W]}

in Fig. 4 at the mole fractionX=0.8 and X=0.45. The (4.35
zero-frequency sound velocity has been calculated from the

compressibility fits shown in Fig. 3, which also determine Experimentally it has been observed that the sound attenua-
the static couplingy?. At finite frequencies no adjustable tion in one wavelength is nearly independent from the mole
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fraction [30]. This is also reproduced by the theory, as oneand the corresponding functions, particularly the dynamic

can see in Fig. 4 at several frequencies. exponentx, = — Z{V* are the same as in pure fluids. Equa-
tion (4.39 is valid at the plait point as well as at the conso-

C. Critical heat and mass transport lute point. However, the thermal diffusion ratio and the mass

With the same procedure that has been applied to sound qusmn coefficient lead to different expressions for both

the previous sections, one can derive expressions for the hegft'cal points.

and mass transport coefficients. With the structures in Ap-
pendix C atw=0, the thermal conductivity3.30 turns into

kr(t) 1 ( p )2

1. Plait point

Using the general structures given in Appendix C and the

JA (Ao 5 thermodynamic expressions for the static vertex functions in
ac [f¢}s'“_'- ] (4.36 Appendix A, the mass diffusion coefficiei8.26 and the
i thermal diffusion coefficient3.27) at the plait point turn into

oT D) \RT

Equations(3.31), (3.32, and (4.36 are valid for the plait

point and the consolute point. The difference between the p )= P %) B2 E) |°_+((9_C)2 (@

two critical points in these expressions lies in the explicit RT1dc/ 9o}y p  \do) o ¢
definition of the appearing model parameters. Analogously (4.40
to Sec. IV B, we have to introduce the renormalized quanti-

ties to obtain functions of the reduced temperature. The only ke(t)  p 1]e [dC| <) dJc

function in the above expressions that has a nontrivial dy- T "RTD L+ %)A o o8| ﬁ)A . (4.43)

namic renormalization if’%- The dynamic order parameter
vertex function read@[he flow parametel’(t) depends o Although a” transport CoeffiCientS haVe been Ca|Cu|ated
via the matching conditio®i3.56)] within the transformed model represented by Ef32), in
the transport coefficient®!.36—(4.41) corresponding to the
o (d) I dx slow hydrodynamic modes, the appearing Onsager coeffi-
f¢§bzz¢ex _Jl % {o|T(D[L+G(D],  (4.37) cients (2.34 combine in such a way that they may be re-
placed completely by the Onsager coefficients of the non-
where the functiorG (1) collects all contributions due to the transformed model represented by E¢8.4) and (2.18.
perturbation expansion. Thus, with E¢4.37) and(3.39 we  Thus we obtain expressions for the thermal conductivity, the
get thermal diffusion ratio, and the mass diffusion coefficient,
which are equal to those obtained in the reduced mbdel
f =@M+ (4.38  [3], where the effects of the fast sound mode have been
¢4 neglected. This is different from the situation‘ide [20] and
The time scale ratiws introduced in Eqs(337} and(3_41), SHe-*He mixtures[31] at the\ transition, where the sound
respectively, has been defined with the transformed Onsagéegrees of freedom lead to small corrections to the slow
coefficients that correspond to the densitigs In the above hydrodynamic coefficients. Inserting E¢.38 into Eqgs.
expressions the Onsager coefficients of the untransformed-40 and(4.41) we get the expressions
model appear. Analogously to E(.41), we may introduce

a time scale ratiov;®(1)=L%T@(l) . Inserting the trans- D(t)= P (%) [f+2al+a2l @)1+ G(D]],
formation (2.29, one can show that both time scale ratios RT\ dc TP
are equal apart from irrelevant parameters such as (4.42
I'(1)/x(1)~12, which have to be neglected in the whole per- K
turbation expansion. Thus we haveng(l)=ws(l) W _p 1 {Ii+aF(d)(t)[1+G(t)]}—(j—_T_)

AP

+OGT(D/4()) and it is not necessary to make a distinc- T  RTD(Y
tion between the two parameters. The | dependencg(In
enters via the model paramete®&(|) generally is a function __Pr L
of wg(l), (1), and the static parametetgl) and (1) RT D(t)
when irrelevant parameters are neglected. Inserting Eq.

(4.39 and the time scale ratiw; into Eq.(4.36, we obtain  for the mass diffusion coefficient and the thermal diffusion
at least for the thermal conductivity the expression coefficient. Analogously t¢3], we have introduced the pa-

rametera in Egs.(4.42 and(4.43), which is defined by
K(t) 1 ( p )Z(ﬁA

N RT/ | dc

ac
aT

i

a

(4.43

o,P

0 2
T D) )T'Pﬂr(d)(t)[l—wg(t)+G(t)].

(4.39

The transport coefficients are considered at zero frequencihis thermodynamic derivative is only weakly varying with
thus the matching conditio8.56) determines the connection the temperature and can be considered as constant in the
between the flow parameter and the reduced temperaturemall critical temperature region. The second equality in Eq.
The fixed point value of the time ratio; isw3;=0, as can be  (4.43 has been obtained by an insertion of the explicit ex-
seen from the flow equation in Appendix D. As a conse-pression for the mass diffusion followed by a rearrangement
guence, the fixed point values of the remaining parametersf the appearing terms. In the first expression Kertwo

_( ac)
a= % A’P. (4.44)
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strongly divergent quantities have to cancel each other bWith the above relations all static quantities apart from the
subtraction in order to obtain the correct asymptotic behavunknown constanta can be calculated from experimental
ior. This shortcoming is not present in the second expressioresults. In order to obtain data representations we have per-
for ky, which is more appropriate for numerical calculations.formed fits of several data. The concentration susceptibility
The asymptotic behavior of the slow transport coefficients ihas been fitted with the expression

D=DO@t " k=Kt 70, =l
(4.495 (ax) _
—| =Dp+Dyt™, (4.52
as already shown if8]. The connection between the coeffi- A TP
cient (1) and the Onsager coefficiedt(l), which has
been determined from the shear viscosity in Sec. IV A, has

been given in Eq(3.39. The Z factor and the exponential With Dy, Do, andx variable parameters. For the isochoric

may be eliminated with Eq(D7). One gets specific heat we have taken the expression
)
L()=—=22—TW@1). (4.46 Ch x=Act " %(1+BtY). (4.53
(k)2 '

Inserting the thermodynamic expression of the unrenormal.—l.he exponentsr=0.11 andA =0.54 are fixed. An appropri-

ized o'rder para}meter vertex function in L";‘t?'e Vill and theate fit form for the isothermal compressibility turned out to
matching condition(3.56), the parametei'”’ is related to be
the Onsager coefficient by

(d) RT (9o —12 )
rom=—1_\—=| (& t")T1). (4.47) Kt~
p T b KT,x=ﬁ, (4.59
In Eq. (4.47 we have replaceﬁ‘% by its one-loop expres- 1+ ﬂ)

sion in Eq.(E2). In order to calculate the transport coeffi-
cients (4.39, (4.42), and (4.43 explicitly at the plait point T

some additional static quantities are needed from experi- = s *He-"He mixture
ment. InHe-*He mixtures experimental information on the 2 3 X=0.8

. e . £
concentration susceptibilityg&/dA) 1 p [32], the isothermal = 0k N
compressibility K1 = (1/p) (dp/ dP) x [33], the isochoric &)
specific healC,, x=T(3s/dT)x » [34], and @P/dT)y , [35] ER ]

is available. All thermodynamic derivatives in Eq4.39—-
(4.47) have to be expressed by these quantities. From stan- 04r 7

dard thermodynamic relation one may derive the relations % ]
(aa) (aa (ac)z (aA) 4.4 = -
—| =l=] +|= — , . o
a AP a c,P a AP Jc T,P
((?c) 1 ac) 14 \/1 22 % (aA) T 0
J— - | —— —4a°| — _— , S E -
dT),p 2a\0A) dT) e\ 9C) 10 &
(4.49 5 [ ]
3 3
(ﬁc) 1 ac) 107 Bt
2 == -
aT P 2a \dA T.p 3 1000 [ .
E.
x 1+\/1 42‘?(7) (&A) J g
- —4a‘| — — . 5
aT cp Jc TP g 960 5 .
=~ al N ......EI s a1l PRIy |
(4.50 107 10° 10% 10"
The isobaric specific heat at constant concentration t
(d0ldT) p can be expressed by the isochoric specific heat
with FIG. 5. Experimentally determined thermodynamic derivatives

and the corresponding fits performed with EGE52—(4.55. The
Jo Jo 1 [aP\? [ap data are taken fromi32] for the concentration susceptibility, the
e RN I
Jr c,P c, c,p T.c

o7 T op isochoric specific hedB3], the isothermal compressibilif4], and

T
p P for (9P/9T), x [35].
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TABLE IV. Fit results of the concentration susceptibili#.52), AL B AL M R ALY B ALY
the isochoric specific hea@.53, the isothermal compressibility 20 *He-*He mixtures -
(454, and @P/dT)x, [Eq. (4.55] in *He*He mixtures atX
=0.8. o .

=18 i 1
=y e

D, (mole/d 5.8 1073 ' o

Dg (mole/) 4.1x10°° 10° e+ - —

X 1.22 g Pl

A, (Jlen?K) 0.115 §

= 0.429 =

Ky (Torr ) 1.66x10°* & Flow from q Ooo

ty 2.14x10 2 o Flow from, i, and k;

ag (Torr/K) 959 10°F E

a,; (Torr/K) —1363.3 100 1 3

a, (Torr/K) —-391 10k N

B (Torr/K) 1480.6 ¥ ;

1k B\EI k-
01k il 3
with a fixed effective exponeny’ =1.19, which has been 10° _ _
used also in pure fluidgl]. At least @P/dT)yx , has been i F ;
fitted with the same expression used in pure fluids, which is “5 o b ]
= E

P 107 “!

(—) =ao+at+a,t’>+ Bt~ (4.55 10° 10"

aT xn

FIG. 6. Transport coefficients ifHe-*He mixtures.x; andky

with the same exponent as in Eq.(4.53. The T, valuea,  have been fitted in the temperature region 30t<0.1.D has been
has been fixed at each mole fraction, while the remainingalculated without any adjustable parameters. The data have been
parameters,, a,, andB have been determined by the fit. taken from[36-3§.
The fit results for all quantities are listed in Table IV. i )

The static data and the corresponding fits are shown igorrection procedure has recently been discuss¢aidrgd,
Fig. 5. At this stage three constant parameferd., anda where as an explicit e_xample the shear viscosity in 2-
remain unknown, while the initial valug(to), f,(t,), and butoxyetha_nol—water mlxtures at the consolute pomt_has
ws(tg) have been determined from a shear viscosity ﬁt_been conS|dered.' In F.'g' 7 we compare the. flow ob.talned
These three parameters may be found by a fit of the therm jom th_e shear V'SCOS'_W fits a?_(=_0.8 from Fig. 2(solid
conductivity xt and the thermal diffusion ratik; in a small !nes) with the flow obtained by fittingy, «r, andkr (da;hed
temperature region T8<t<10"2 where experimental data lines). In the background theIOnsager coefficiénbbtained
are available[36,37]. The results of the calculation are from th? seqonq procgdure IS Iar'ge'r than the one frpm t_he
shown in Fig. 6 as solid lines. The mass diffusion coefficien hear viscosity fit causing the deviation in the shear viscosity

D, which is also experimentally available at this mole frac- dashed line in Fig. @)]. The time scale rafio; is growing

tion [38], has been calculated without any adjustable paramwith the improved background behavior of andkr, which

eter and is shown in the same figure. The fit region is indiM€ans & decrease in-aws. Together with the increasini,

cated by a bar in the andk; plot. The obtained values for th|52 implies that the effective Onsager coefficieRi(1

&, L, anda are listed in the first column of Table V. —Wws) entering the matching condition is only slightly vary-
In Fig. 6 one can see a deviation of the calculated solin9: The frequency-dependent kink in the sound velocity and

lines and the experimental dataef andk; . This deviation the sound attenuation is mainly determined by this effective

may be removed by a change of the fitting procedure. msteaﬁnsager coefficient. As a consequence, the difference of the

of calculating the flow from shear viscosity fits alone, it is 10WS in Fig. 7 should have only a weak influence on the
also possible to perform a common fit of x7, andky that sound velocity and the sound attenuation. This is verified in

determines all six parameteR{(ty), f,(to), Wa(to), M L) Fig. 8, where we have compared the sound velocities and

anda in one step. The result of this procedure is shown assound attenuations following from the two different flows.

dashed lines in Fig. 6. Now the background behaviokpf 2. Consolute point

and kt is better than in the previous fitting procedure, but o . L
deviations in the shear viscosity appear. Each improvement | "€ mass diffusion coefficient and the thermal diffusion
in the thermal transport coefficients causes a deviation in thEati0 at the consolute point are obtained from H§29 and
shear viscosity. This background deviations imply that on 3.29:

or more coefficients include temperature-dependent regular p [0A)

background contributions that are not contained in our D(t)= == (—) £ (4.56)
model. The effect of such contributions and the systematic RT | dc TP i
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FIG. 7. Comparison of the flow of the dynamical parameters |G, 8. Sound velocityc, and sound attenuation in one wave-

found from a fit of the shear viscosifgolid lines with the flow |engtha, calculated from different flows. The full lines are those of
found from the fit of the shear viscosity, the thermal conductivity, rig. 4 with the parameters found from a fit of the shear viscosity;

and the thermal diffusion ratitdashed lines the dashed lines are from a fit of the shear viscosity, thermal con-

ductivity, and thermal diffusion ratio. The data have been taken
from [30].

(4.57

The mass diffusion coefficient is completely determined by
the dynamic flow, which has been found for aniline-
cyclohexane mixtures from the shear viscosity in Sec. IV A.
Therefore,D can be calculated from E@4.60 without any
adjustable parameter and compared with the corresponding
data in[40]. There the thermal diffusion ration has also been
measured. The thermal diffusion ratio is immediately deter-
mined by Eq.(4.57) with L as an adjustable parameter. In
for the mass diffusion coefficient at the consolute point. Therig. 9 we have compared the results for the mass diffusion
asymptotic behavior of the transport coefficients at the concoefficient and the thermal diffusion coefficient with the ex-
solute point is the same as at the plait point in Sec. IV C 1perimental data taken from40]. Choosing =375
Analogously to the plait point, the coefficieht? is related  x 1075 j cnfig s K mole, the calculatek; curve is in good

by Eq. (4.46 to the Onsager coefficierif. However, the  agreement with the data.

static order parameter vertex function now corresponds to
another thermodynamic derivative, as can be seen from
Table VIII. Therefore, Eq(4.46 turns into

Inserting Eq.(4.38 into Eq. (4.56), we get the expression

p [JdA
D(t)=ﬁ(%)T’PF(d)(I)[HG(I)] (4.58

V. COMPARISON WITH THE
FERRELL-BHATTACHARJEE THEORY
AT THE CONSOLUTE POINT

Most of the critical sound experiments near the consolute
point have been analyzed in terms of the theory of Ferrell
and Bhattacharjeésee Fig. 10 They start in their phenom-
enological theory from the thermodynamic expression for the
adiabatic sound velocity and isolate the singular contribution
related to the specific heat at constant pressure and concen-
trationC, ¢(t) [14]. By scaling arguments and observing the
Kramers-Kronig relations they generalize the static sound

RT [ 4d
raw=" %) g @so
T,P

at the consolute point. Inserting into E¢.58 we obtain

D(t)=(& ") T(t[1+G(1)]. (4.60
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T ™ AL o] TABLE V. Comparison of the two fitting procedureside-*He

Aniline-Cyclohexane ! mixtures atX=0.8. In the first procedurélow from ) the initial
X.=0.44 oD | valuesI'(to), fi(to), andws(to) have been determined by a fit of

the shear viscosity alone, while the constaints., anda have been

E found by a fit ofkt andky . In the second proceduféow from 7,

] k7, andky), all six parameters have been found by a common fit of

7, k1, andky.

10°F

D [cms]

Parameter Flow fromy  Flow from #», k1, andks

107 b 4 I'(t) (cm¥s) 1.70x 10718 5.54x 10718
F ] fi(to) 0.430 0.232

ws(to) 0.819 0.913

4 (cmP/s mole 2.19x1074 1.49x1073

L (cmPZsymole)  5.40<1073 —3.52¢1072

a (gK/J) 8.89x 1073 2.05<10°2

10F

the plait point considered in Sec. 1V, the sound velocity and
the sound attenuation are determined by the complex func-
tion Cq given in Eq.(3.51). Contributions from heat and mass
transport included irDg are negligible. The only difference
from the plait point is that now the parametessc, and the
1 e — static vertex functionsa; and I'y,, ,,. correspond to other
10" 10° 10° 10" . L 272

thermodynamic derivatives. From E.36 and Table IX

t we get

FIG. 9. Transport coefficients in aniline-cyclohexane mixtures. . RT/[dP . RT? (oo
In ks the parametet. has been adjusted has been calculated Cl:? ) » C2= Cor (ﬁ) SN CRY
without any adjustable parameters. The data have been taken from et ne T
[40]. The thermodynamic expressions of the static vertex func-
tionsa; andIl'y, ,, are immediately obtained from Eq#5)

velocity to the complex frequency-dependent sound velocityand(A6). As discussed in Sec. IV, the sound velocity at zero
which is, in our notation,Cy(t,w), by introducing a frequency can be written asZ(t)=ci.+ci(t), with cZ
frequency-dependent specific hé o(t, ) [15,41, which  =a;a,¢7 and cj(t)=a;C5I',m,. In contrast to the plait
is calculated within the decouplgd mode th?[ﬂ?]- point, the critical valuecg. is now large compared to the
In our theory the transformatiof2.29 eliminates one of fluctuation induced paxt,(t). This suggests an expansion of

the static coupl_mgs/i , Which I_eads to the separation of non- c(t) — Co. into powers of the small ratia,(t)/c... We re-
singular and singular parts in the complex sound velocnyWrite the sound velocity as

Physically, this means introducing variations along and per-
pendicular to the phase transition lifig( P). Analogously to

cp(t)
LAbi BEMARAALLL B ALLL BELELALLLL BELEL AL | b IR A AL IR AL B | CS(t)_CSCZ CSC 1+ C _1

SsC

aT

(5.2

with a coupling constang, which has been introduced by
Ferrell and Bhattacharjee. Neglecting the temperature-
dependent term in the denominatoraj({t), we obtain from
our expressionpwith Egs.(2.32), (2.33, (A5), and(A6) and
a;=1/RpT]

10° 10 10" 10° 10' 10° 10° 10 100 10° 10 g=pT—= R , .
JT c,T JpP c,T

C c

FIG. 10. Comparison with the result of Ferrell and Bhattachar-
jee: FB, Ferrell and Bhattacharjee’s empirical function; FM, ourin agreement with Ferrell and Bhattacharjee.
result in thee expansion; FM3, our result idi=3; FL, our result for The next step is to compare the frequency dependence.
pure fluids. Since no experimental results concerning the frequency de-



PRE 58 CRITICAL DYNAMICS IN MIXTURES 6265

pendence of the sound velocity are available, we restrict ourregion concerning the dependence of the static specific heat
selves in this discussion to the frequency-dependent sournd the couplingy on the frequency-dependent effective
absorption. The most appropriate quantity is the sound agémperature. A typical temperature flow for this coupling is
sorbtion in one wavelength since several theoretical formihOWn in Fig. 11. Contrary to the behavior near a plait point

. . . see Fig. 3, y is a decreasing function near the consolute
including the result of Ferrell and Bhattacharjee have bee oint. This temperature dependence is related to the nonuni-

compared recent![/43,44]. For this purpose we have 10 re- yersa| amplitude of the Wegner correctigi8]. The quantity
strict our expressions on the one hand to the asymptotic critistudied is the sound absorption in one wavelength introduced
cal region, regarding the solution of the matching condition.in Eq. (4.34). Inserting the complete expressi@.51) into

On the other hand, we have to remain in the nonasymptoti&q. (4.34 we obtain

1+ YA (OF P u(t))
11+ Y2(O)F 4 (0 (1), W(1))|?

1+ Y2()F P (u(t)
|14+ y2(DF , (u(t),W(1))|?

c2() YA IM[F 4 (v(1),W(t))]

(5.9

a\=1T

2+ c2({1+ Y(OREF (v (t),W(1)]}

The static couplingy? has to be calculated according to Eq. It is obvious that for large) both functions reach the value
(3.47). The amplitude functions , (v,W) and F{®(u) are =~ G=1, whereas for small they reach the valué= 0. How-
listed in Appendix E in one-loop order. The temperatureever, the approach to zero is differe@g~(2, whereas
scalet=t(t) follows from the matching conditiof8.58. In ~ Ggw~Q*~*?". This is a small effect mentioned but ne-
the experimental region?(t) is smaller than its fixed point glected by Ferrell and Bhattacharjee. If we do the same we
value and we may neglect thg® terms against 1see Fig. may simply write

11). Neglecting also the second term in the denominator, the IM[F (v (1), W(0))]
expression simplifies to Geu(Q)= i 77/16, , (5.10
20N~ 201 . . . . .
Cp(t) ¥=(1) — . — shown in Fig. 10 and compared with other calculations. It is
=T —z——ImF. (u).w)]. (59 aiso of interest to compare, / a, . with the result valid for

sC

pure fluids. There we hawe,.=0 and
Dividing by the sound attenuation in one wavelengthr at ey — . —
we obtain the final result, which has to be compared with the ay = Y (OIMF, (1), w(t)] (5.11)
empirical function given by Ferrell and Bhattacharjee,

21 1/2
1+ 0.414< ﬁ)

T — —-—.
1+ y*(OREF . (u(t),W(1)]
o -2 If we take for the static coupling? its fixed point value, we
—AzGFB(Q)z , (5.6)  find for the ratio
o

AC

O _ ooy LTO-35 REF (0(H(Te) W(H(T))]
where Q= w/2T £, “t? and T, has to be taken from the ae Fu(€2) 1.06 '
asymptotic behavior of the order parameter Onsager coeffi- (5.12

cient. Our expression reads )
Neglecting the factor o6y, ({2), we can conclude that un-

a, cﬁ(t_) yz(t_) Im[F . (t_),\Tv(t_))] der thg conditions mentioned_ the ratio Qf sound absorp_tion in
—=Gem(Q)= 5= = . the mixtures and the pure fluid scale with the same universal
e CH(t(Te)) Y (t(Te)) /16 scaling function. Thus we have derived, on the basis of the

(5.7 stochastic models describing the respective critical dynam-
ics, what has been observed within the phenomenological
Ptheory [45]. There an effective, nonasymptotic scaling fre-
guency has been introduced, quite similar to &g5) in [1].
T=1"S(Q) (5.9 However, we want to remark that the asymptotic proper-
' ' ties of the sound attenuation in mixtures and pure fluids are

with S being the solution o88=1+1602S24~2. As a fur- different. For example, whereas for pure fluidsTat, «,

ther approximatior(used by Ferrell and Bhattacharjetat goes to a constant fav— 0 in mixtures, it goes to zero like

_alzy . . . .
s valid in the experimental regime we taks as constant g "L ¢ OUW T 0 BRI e e
and y2(t) =const®. ThenGg,, reads y

by the validity of the approximation made. Universality in

fluids and mixtures is based on the renormalization proper-
. (5.9 ties, namely, the fact that all renormalizations necessary can
/16 be expressed by those of mod#¢l There are other nonuni-

Note that the matching condition has to be solved in th
asymptotic regime. This leads to the scaling solufibh

Grm(Q2)=

t ) IM[F (v (t),W(1))]
(Te)
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versal properties; for a striking example see the enhancementore, it would be of interest to extend the verification of the
of the thermal conductivity near the consolute point, which isexact relation between the mass diffusidrand the thermal
governed by the parameter present only in the extended diffusion ratio ky, D/kr=const, further out to the back-
modelH’ [13]. We would like to note that in a mixture there ground.
aretwo dynamic exponents of transient correction to scaling:  Another point of interest is the temperature dependence of
One corresponds to the mode coupling and has the santke correlation length, which enters the matching condition.
value as in pure fluide;= e and the other one corresponds The crossover of the correlation length to its background
to the parametew present only in mixtures and is related to value is of importance and favorable conditions in light scat-
the pure fluid exponent, of the thermal conductivityw,,  tering experiments may be found in binary polymeric mix-
=X,\[2~€l2. tures[52,53. The consequences of a possible crossover to
“mean field theory” on the behavior of the dynamical quan-
tities [54] should be worked out. The small critical exponent
found in polymer solutionsx,=0.044,[55] is so far unex-
We have presented a nonasymptotic renormalizatioplained and connected with the question of another univer-
group theory for the critical behavior of the hydrodynamic sality class for these systems.
modes including the sound mode. Nonuniversal parameters Regarding the sound propagation near the consolute and
enter the theory. These are background values of the mod#hte gas-liquid critical point the theory can be extended to
Onsager coefficientd;, (the renormalized coefficient for the noncritical concentrations and densities, respectively. For the
order parametgy the unrenormalized values and L, the first case data are available for aniline-cyclohexane mixtures

renormalized ratio of Onsager coefficiems(ty), and the [44].

mode coupling constarf(t,). The static quantities are taken

directly from experiments and/or are calculated from mea- ACKNOWLEDGMENTS

sured quantities using thermodynamic relations. The dy- ) i

namic field theoretic functions are calculated within the one- We thank H. Meyer for sending us experimental data; we

loop approximation. Within this approximation the also acknowledge useful d|s_cu55|ons with J. Luettmer-

asymptotic critical exponent for the shear viscosity is givenotrathmann and H. Meyer. This work was supported by the

by x,,=1/19=0.053[2] and the asymptotic value of the Ka- Fonds zur Foderung der wissenschaftlichen Forschung un-

wasaki amplitude byR=1.056[12]. Whereas the Kawasaki 9€r Project No. P12422-TPH.

amplitude agrees with the value adopted in mode coupling

theory[5] and found in the asymptotic regi¢a6], the criti- APPENDIX A: EXPLICIT EXPRESSIONS FOR STATIC

cal exponeni, seems to be too small. Theoretical calcula- QUANTITIES

tions beyond one-loop order lead to values between [GLT}K ) . . .

up to 0.06848], whereas experimental values in the region In t_h_|s appgnd|x_we give some connections between the

0.067+0.003[49] were found. One may treat the exponentquar?tltles defined in the theore_tlcal model and thermqt_zly—

X, as a parameter keeping the correct value of the asymptotf&a.m'cs' (;Iearly, these connections depend on the cr|_t|ca|

Kawasaki amplitudé50] and improve the fit as well as the pplnt (plait or COF_]S(_C’)|.U'[e pon)tgne cor.15|ders. The coeffi-

predictions. However, this has to include gravitational effect<ients of the matrixA in the static functional2.4) represent

besides the background effects, at least near the gas-liquifié Second-order expansion coefficients in an expansion of

phase transition extending the calculation to noncritical valihe internal energy in powers of the extensive densfds

ues of the density. This has been done for pure fluid§@ Therefo_re, they are det_ermlned by second-o_rder derivatives

and qualitatively similar agreement with experiment could bedf the internal energy in the thermodynamic background,

reached as in mode coupling thed&]. We expect this be which are equal to first-order derivatives of the intensive

the case also for mixtures. fields. The coefficients have been summarized in Table VI
The situation concerning the transport coefficients offor both critical points. _

3HeHe mixtures is not completely satisfying; improve- The syperscrlp(O) |nd|cate_s backgr_o_und va_lues, which

ments of the fits of the thermal conductivity and of the ther-2€ considered as constants in the critical region. The coef-

mal diffusion ratio are at the expense of the agreement witfficients of the matrixA and the couplingsy, are related to

the shear viscosity. We attribute this to uncertainties in theahermodynamics by Eq2.10. Analogously to thex line in

static quantities used in the background. So far consistenciHe-*He mixtures[22,23, k;, k,, and the ratio of the twey

of the data for the transport coefficients can be checked onlgouplings are related to derivatives along the critical line,

within 10%. We would like to mention that only fdHe-*He ~ which are smooth functions of the temperature and can there-

mixtures are we in the favorable situation of having experi-fore be considered as constants in the critical region. As a

mental values available for all three transport coefficientsconsequence, both couplings must have the same critical

and the sound mode. For other mixtures near the gas-liquittmperature behavior in order to obtain a constant ratio. The

critical point only the thermal conductivity could be com- corresponding thermodynamic expressions are listed in

pared with mode coupling calculatioffer CO,-ethane mix-  Table VII.

tures seg5]; for methane-ethane mixtures Jéd)). The thermodynamic expressions for the correlation func-
Concerning mixtures near the consolute point it would betions are determined from the first-order response of the local

worthwhile to look for examples other than 2- density function to small variations of the intensive external

butoxyethanol-water mixtures, where a measurable erfields[3]. They have been summarized in Table VIII.

hancement of the thermal conductivity is observed. Further- The transformation matrix introduced in E@®.29 may

VI. CONCLUSION
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TABLE VI. Thermodynamic identification of the background TABLE VIII. Correspondence between the correlations and the

parametersy; at the plait point and at the consolute point. thermodynamic derivatives at the two critical points.
Parameter PP CP Cumulant PP CP
ai; p (aA)“’) p (aT)“’) (dodo)c RT(aa) RT(&C)
RT\ dc op RT\do cp p \dT AP p \dA P
az 1 (ap)“’) 1 (ap)“’) (9191)c RT(&C) RT(aa)
RTp \ dp e RTp \ dp e p \dA op p \dT P
ag p [0A\© p (oT\@ (820)c ap dp
e — | = RTp|— RTpl P
RT ap oc RT ap oc d oA g cT
1 (oP\© 1 [oP\©@ (9102)c RT((?p) RT(ap)
R_TPEUP RT, \dc p \dA] p\IT) o
Wz, el
pl=5 Pl=5
P oA P cT

be expressed by thermodynamic derivatives along the critical
line. Inserting the thermodynamic expressions from Table
VIl into the transformation matrix2.30 the matrix elements

are determined by finite critical line derivatives. The result <r‘h £ Jo=— C (A5)
has been listed in Table IX, where a concentration suscepti- 1H/e ¢ Te
bility at T
ty c e (=R 3(aT)2 (aa) (ag)z -
Jc J J m,m,).= — — —| =
XoT.=| — + 5| o° (A1) 22/c Pop e | V9T it .+ et
e | A o1 P dA oT dA " e
e . ’ : o (A6)
and a paramete(CC,TC representing some kind of specific
heat atT. APPENDIX B: DYNAMIC FUNCTIONAL AND VERTEX
FUNCTIONS

CCYTC: T (AZ)

do 1 (dP ap
(,TT)H + p? (5_1-)“ (ﬁ)ﬂ The calculation of dynamic correlation functions or dy-
e e e namic vertex functions correspondingly in a perturbation se-
have been introduced. From the background parameters fes requires a generating dynamic functional. The basic way
Table VI, the correlation functions in Table VIII, and the to obtain such a functional from a set of dynamic equations,
transformation matrix in Table IX thermodynamic expres-which include stochastic forces, has been showfR2if for
sions of the transformed correlation functiof32 and  the dynamics of ferromagnets. In this treatment the essential

(2.33 can be calculated, which are at the plait point presumptions were that first all equations contain fluctuating
RT forces and second these forces are stochastically indepen-
(MM e=— X010 (A3)  dent, which means that the corresponding matrix of Onsager
p e

coefficients is not singular. However, the hydrodynamic

Jc ac\* equations include the continuity equation for the mass den-
(ﬂ) —(ﬂ> Xo,T, sity, which is an exact relation expressing the conservation
o.P o.Te of mass and therefore do not contain any fluctuating force.
(A4) Nevertheless, it is possible to extend the treatment to a mixed
and at the consolute point set of dynamic equations consisting of stochastic and exact

o o INE
<m2m2>c:RTP3
P/ -
o, T,

TABLE VII. Thermodynamic equivalents of the constakisk, TABLE IX. Thermodynamic expressions of the transformation
introduced in Eq(2.10 and the ratioy, / ¥, at the plait point and at  matrix (2.29.
the consolute point.

Coefficient PP CP
Parameter PP CP
My, 1 1
k1 p (0A) p (aT) My, 71(30) chl(ao
5| o~ BTl 32 XoT\ A T\ 9T
RT\éc o, RT\do o, OA o, Clel gT or,
ka 1 (ap) 1 (ap) Mo 1 (ap) 1 (ap)
pRT\dp o, pRT\dp eT, P2 \oA o, P2 \aT o,
2 p) p) Moy p) p)
2o B aff,
a',Tc g C,TC (T,TC C,'I'C
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' " T aMethylpentane Niroethane The & function may be expressed by an exponential function
5(&taj —Wj): f D(Iaj)exp{ - f de dt 51(&taj _W])} .
(B6)

Performing a Gaussian transformation where also auxiliary
fields a; are introduced, Eq(B5) turns into

10° 107 10° 10° 10* 10° 10? 10" 10°

N M
t L~ o~
FIG. 11. Typical static coupling? for a mixture at the conso- Z4= J J |];[1 D(a;,i a’i)_].;[l D(a;,ia))e”, (B7)
lute point. )
equations. For the hydrodynamic equations of pure fluids thidvith
has been shown in explicithl]. Let us assume that we have
N densitiese;, i=1,...N, with the dynamic equation
0a=V+6 (B1) szdtf dx(—ZTK'ZJrZT(a@—\?)
containing stochastically independent fluctuating forégs 1N sy 1 SW
(in liquid mixtures this would bev, ¢, j;, andj) and M +3T0a-W+= > —+2 3 | (Y
densitiesa;, i=1, ... N, fulfilling the exact relation 29 da; 2= b4
ada=W (B2)
(in liquid mixtures this would bg). The fluctuating forces Especially in liquid mixtures, the above dynamic functional
fulfill the Einstein relation corresponds to dynamic equations fey c, p, j|, andj; .
. . . Introducing the order parameté2.1) or (2.2), respectively,
(O(X,1)®O(X',t"))=—2A"V25(x—x") 8(t—t"), and the secondary densiti¢8.3), we obtain the dynamic

(B3) equations(2.12—(2.15 containing fluctuating forces. How-

<, . . - ever, these are not independent, which is expressed by the
whereA 1S aNxN nonsingular matrix. The coefficients Of. relations(2.20 between the Onsager coefficients leading to
this matnx» resuIE from the corresponding hydrodynamicy, . singular matri{ A;;] (singular in the sense that no in-
equationsV andW generally are functions of the densities yerse matrix existsdefined in Eq(2.17). The order param-
a; anda;. The exact relationgB2) may be considered as eter and the secondary densities may also be introduced in

secondary conditions on the generating functional, whichhe dynamic functionalB8). This leads to the dynamic func-
means that the stochastic forces fluctuate in such a way thgbnal

Eq. (B2) is always fulfilled. Thus the generating functional
can be written as

N M 5 B
Z4= iﬂl D(®i)j1;[1 D(Fj)o(Fy) sz dtf dX(—[ﬁi]T[Aij][ﬁj]
1 TR =14 ~ A
<o [ avaxeric ), BTGB, S S @9

(B4) (5BI ,

with F;=d.a;—W;. D refers to a suitable integration mea-

sure. inserting Eq(B1) and changing the integration vari- Where[3;] is defined by[ 817=(o.81.8z.01.0) ([(Bilis
ables from®; to «; leads to defined analogously with the corresponding auxiliary densi-

ties and[A;;] is the coefficient matrix2.17). Further, we

N M have introducedV;]"=(V",W"). The structure of the func-
Zy= J H D(ai)H D(a;) 8(da;—W;) tional (B9) is same as for the case where only dynamic equa-
=t 1= tions with stochastic independent fluctuating forces are con-
Xex;{—i j dtJ dx([o’! FRvy sidered. The fact that now exact relations are included is

4 t considered in the properties pA;;], which is now a singu-

N M lar (not invertablg¢ matrix. An explicit expression for Eq.

XK,—l[at&_g]Jrzz %+22 %” (B9) is obtaineq inserting the dynam_ic equatio«i&lZ)—_
T Oq; LY (2.15. The Fourier transformed Gaussian part can be written

(B5) as
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the dynamic vertex functions in lowest-order perturbation

1 ~
J(°>=§ Jk {I[Bi17(k,0),[ Bi1T(k,w)} theory. They are given explicitly by
: [0] —iw[1]+[La3)(K)
: [Bil(—k,— o) IOk, w)= o ,
XF(O)(k,w)<[Z;;](_k’_w))- (B10) (k) io[1]+[Lagl(k)  —2[Az5](k)

(B11)

_ _ _ _ . where [1] denotes the unit matrix. Further, we have
The integration is  defined as [, ,=/[d°k/  [L;.](k)=[L,3]"(k), where the dagger superscript denotes
(2) 9] (dw/27). The elements of the matri(®(k,w) are  the adjoint matrix. The submatrices are given by

TK2(5+Kk?) LK2(7+Kk?) LkA(7+kd)  —ikgh, O
(alllo- + alZIi K (agafe+ a12|°- 12K (allla- 12t a12;\) k?  ikayC 0
[Eaﬁ](k) = (alzlo— + 322|O—</>) k? (agu+ azzlo— 12k (alzlo— 1271 a22;\) k2 ikagt 0 , (B12
0 0 ika;e ank? 0
0 0 0 0 ahk

ke [k Lk o0 o
(k2 ak? [k 0 0
[A\apl(k)=[ Lgk* Lik* N> 0O 0
0o o 0 k2 O

0o o 0 0 \K

(B13)

The interaction terms in the Hamiltonid®.4) and the mode coupling terms in the dynamic equation modify the m@dig)
and may be calculated in a perturbation expansion. Generally, the matrix of the dynamic two-point vertex function is given by

I'k,w)=T9(k,w)—32(k,w), (B14)

where 2 (k,w) contains l-irreducible diagrams with two external legs. The mdit(ilx,w) of the vertex functions has the
structure

. [0] [T 5k, w)
I'k,w)={ . . : (B15)
[T 5l(ko) [Ta3l(ko)

with the submatrix

f&/z fﬁa f*d; fﬂqg 0 The submatrice@f“;l,ﬁ] and[lo“;l,;;] are defined analogously.
s i ' s 2 . The propagators of the model are determined inverting Eq.
Tg3 T gz, Tqe7 O (B11). Within the model the hydrodynamic structure is con-
1 4191 9192 a1 . . . h . .
. . i i tained in the dynamic two-point vertex functions, which are
[T.z]= qugs qual Fq2~q2 I‘qu o |. cg!culated in perturpanon expansion. Some details and d_ef|-
. . nitions are summarized in Appendix B. Because the consid-
fﬁp rlal Flﬁz fq~| 0 ered structures are invariant under the transformgo?o),
i the following expressions are generally formulated indepen-
0 0 0 0 Iy dently of which secondary densitiegy( or m,) are used.

(B16)  This is indicated by indiceg;, for which one may insen;
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or m;. The dynamic two-point vertex functions have the structure
—io[1+K[E,z]  KGal [0]
[T]= K[G=]T — itk 0 , (B17)
[o]" 0 —iw+k2
|
with three-dimensional submatrices and vectors defined as ° ° ° ° ° °
[Fuzl=[TaallFi2], [Gal=[TallG],
f,5 ET 941 . .
o b g o o 1 (d)
[Fual= - [6.=| Yed [Gal=al e ] (829
Fo Fuaa Gl () i i
where[F 2] has the same structure as in E§18) with a
o superscriptd) at all functions and
O
o 1 ° = o =T o o
[Ga]_ 9' 1 (818) ° F¢</’ 0 °, Falal Falaz
g|FL~1'2 [raa]: - °, 3 Faa: ° ° .
0 7 r r

The matrices and vectors contained I, ] are defined in
the two-dimensional secondary density space by

[1] in Eq. (B17) is the three-dimensional unit matrix afe]
is a three-dimensional null vector. The functlofLs~ and
ga, or g|a denote thek? andk contributions to the vertex
functions at wave vectdk=0,

o ﬁ o ° & o
faiaj:mraiaj“:o’ gaiT:%Faiﬂk:O’

J o

Cila:ak Ia|k 0- (B20)

Generally, these functions depend on the frequency, the tem-

a1 A

(B22)

The secondary densities), are decoupled; therefore, in
these variables the cross vertex functﬁqlmzzo and the
matrix (B22) is of diagonal structure.

APPENDIX C: EXPLICIT EXPRESSIONS FOR C—s

Due to the invariance of the determinaf®10 under
transformation(2.29, the explicit appearance of dynamic
vertex functions in Eqs(3.11)—(3.30 is the same in vari-
ablesd, as well as infy. In the limit c—o this changes
because of the different behavior of the vect{)@a] and
[Ga] The functlonsg¢| and g,¢ do not contain a factoc
and therefore can be neglected. Independently of the second-
ary densities, both functior§§12”| and§|;,2 are proportional to
c. Differences in the two sets of secondary densities arise in
the vertex function{{]alT and§|31. For the secondary densi-
ties Go the vertex functions behave likg,j~O(c) and

~0(1). Thus the vectors in EqB18) can be written as

0 0
lim[Gg]=| YaT |, lim[Gg]=| 0 (C1)
C—®© ng"l' C—®© g'az

perature, the Onsager coefficients, and the static and dynamic
couplings. They may be calculated in perturbation expansiofror the secondary densities, one hasgm 7~0(¢) and

by summing one-particle irreducible graphical contributionsg,- NO(C) Thus the vectorgGa] and[Ga] in Eq. (B18)
with two corresponding external legs. Analogously to purereduce to

fluids [1], the funct|0ns in Eq(B18) separate into purely

dynamic functlons[F(d)] [G9], and[GY], in which all 0 0

contributions due to perturbation expansion are proportional Iim[é 1= §m1~, Iim[é~]= §1|ﬁq1

to the mode coupling parameters and frequency-dependent oo m O oo m i
i ma my

functions[T',,] that reduce to the static two-point vertex

functions [[®]=[T,.] (@w=0) in the limit of zero fre-
guency. Thus EqB18) can be written as

. (C2

when onlyc— o contributions are considered. The expres-
sions(3.11), (3.12, (3.16, and(3.28 reduce to
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clim ng _éq;lélqz:_(émﬂélr'ﬁl"'ém;lélﬁ‘lz)u (C3)

C— ™

o

gml~lglﬁ11fmlﬁ11+ gszgIﬁzfmzﬁ”lz—" gmnglﬁzfm2ﬁ1+ ngNIgIr'ﬁlfmlﬁ2

lim Dg="f+1 - L =fi+ ey N (o7
e e aafhy g, Om,191m,  Om,1 91,
o ° gqlﬁl~ gmngImlfm2ﬁ12+gszglﬁzfmlﬁl_gmnger]zfmzﬁl_gszgImlfmlﬁz

: (CH

°I|m Fuz= fqlal— f
C—©

e o Gim,1G1 + O O
gl m, 1 9Im, m,| YIm,

o ) o o

(o e éql ) gmllglmlquym2 m2¢+gmzlglm2f¢ml mlqs gmllglmzfd;ml m2¢ gmzlglmlf(;bmzfmld)
q1¢ -

lim Wez="f 4| f

‘oo q2¢ gq2I gmllglm1+gmzlglm2
(Co)
|
All functions in Egs.(C3) and (3.28 are calculated in per- %(dg( ) 2 =
turbation expansion, which simplifies in the limit—oe. s @ L Ly
From the structure of the perturbational contributions two F(d> 2 2 = c10
general statements, valid in all orders of the perturbation [E Hoo L) (C10

expansion, can be made. 2 2 2
(i) No contributions to the purely dynamic pa|[t§(d)] Ly Liz A

and[ G@] introduced in Eq(B21) arise from the perturba-

tion expansion. Thus one simply has APPENDIX D: RENORMALIZATION OF THE STATIC

AND DYNAMIC PARAMETERS

. . 0 . . 0 One advantage of the introduction of the transformed den-
[GY=[Gy"= 0, [G91=[G= icy . sitiesm, in Eq. (2.29 is that the whole renormalization pro-
ic icy cedure concerning the parameters appearing also in mixtures

(C7  is equal to the procedure in pure fluids, which have been
considered extensively ii]. Therefore, we give here only a
The perturbat|on expansion contributes only to the vertexshort summary of the basic definitions and relations. The
renormalization will be performed within the field theoretic
e(enormallza'uon group theory. With the minimal subtraction
schemg56] dimensional singularities at space dimensibn
=4 in the vertex functions will be absorbed infofactors.
Within statics the momentum density and the density

func'uons[l“,m] which may be considered as frequency-
dependent extensions of the static vertex functions. The r
sulting matrices are

Fyg(@) s 0 i 0 appearing in Eq(2.31) do not need renormalization. The
1°“ _ 0 Igoq(@w) Tyg(w) remaining densitieghy andm, in Eq. (2..3]) and the corre-
[Laql L % (€8 sponding model parameters renormalize analogouskpdo
0 I a(®) Tgq (o) andq in pure fluids[1]. The order parameter and the second

secondary field are renormalized by

] f‘¢¢(w) 0 0 b0 lezqﬁ m lezmg, (D1)
Coml=| 0 & 0 . (cY

° . . - .y _ 2
0 0 szmz(w) whereZmz is determined by the singularities of th&- ¢

correlation function and can be written as

(i) Also in the matrix[l%g’;z] all functions do not get any Zyy =1+ y*A(U). (D2
contributions from the mode couplings, except the order pa- . . N -~
rameter functiorf @ Therefore, one may write A_(u)_ contalrls the smgularltles of_ the specific hea_lt_ calculated
b within the ¢* model and is obtained by an additive renor-
malization of the?- ¢? correlation functionu is the renor-

o d o o
f((b?i(“’) L Ly malized fourth-order coupling of the* model (2.6) in
[I":(d)]_ L i L which renormalized parameters will be introduced by
—qgqd T 12 ]
L L, A F—fe=2,'Z,r, U=«kZ,°Z,uAy’. (D3)
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« is the reference wave number aee-d—4. The factor _ ) S et & L, -
Ay=T(3—d/2)/22792(d—2) has been chosen for conve- =Z,2;°T,  Ly=kZyZmly, MN=K"Zm\,
nience to obtain a minimal number of perturbation contribu- (D12

tions in ane expansion of the specific heg24]. The € sin-
gularities connected with the remaining parametgrin Eq.
(2.31) can also be absorbed in renormalization factors de:
fined in the¢* model by

)\| = KZZ)\I)\| f ;\t: KZZ)\t}\t . (D13)

In mixtures the additional Onsager coefficients

o

2 2~ r 25120 i 25120

. _ _ A=K, L=K Z3L, Lyp=«Z31,, (D14
Y= Ke/zzqslzrlrgzrymAd 12 (D4) ¢ m,
appear. From the above relations one can see thatignly,
and\; have independent dynamifactors, while the renor-

From theZ factors we introduce thé functions A o ~1€ i
malization of the remaining coefficients is completely deter-

9lnzt mined by staticsz{? Z,,, andZ, in Egs.(D12) and(D13)
i= ( K a—KI , i=¢,q,r,u. (D5 do not contain statie poles. The couplings, andc, renor-
0 malize as
S .3 o _ 3512
The index 0 in Eq(D5) indicates that the derivative is taken C1=K’C1, Cp=kK"ZyC. (D19

at fixed unrenormalized parameters. The fixed point values

¥ of the functions at the Heisenberg fixed point are relatedWe define{ functions fori =I", L¢,7\ L.2,L12,M A, analo-
to the critical exponents by gously to Eq.(D5). The critical temperature dependence of

the Onsager coefficients is determined by the flow equations

& T Emy= g b T4 e I azr(é“r +44), |a=7\(—2+§m2), (D16)
The static vertex functions can be expressed by renormalized dL 6 1 1
parameters with ! ar Lyl =1+ 2 o 2 L, | (D17)
i _9 o _ dn dn
I'oyé 2,u)=(K|)Zz¢1epr — §¢> ISy, | d—|'=>\|(—2+gkl), | d_|t:)\t(_2+§>\t)- (D18)

(D7)
The additional Onsager coefficients in mixtures behave as

d
e (& 72,&>=zm1exp( f' = )Fa?m (Y2(1),u(l)).
2112 2 1 X 2 rilv}

LY AL
(D8) ar - % larT 2 %)b
The couplingy? has been defined in E¢3.47. The ampli- A
ior[©® i dLy, 1 -
tude functionl", corresponds to the inverse order parameter | —2—| 242 L (D19)
. A _ ) | 5 $m, |L12-
correlation of the¢® model. The secondary density ampli-

tude function can be written as . . .
The corresponding flow equation for the couplimgsandc,

are

fo 2 | 2 , D9
Lo, (V" (D=1 2 emumy (P9 de; _ dc,
B TR T TR

-3+ E Im ) (D20
whereF®(u(1)) is the amplitude of thég2¢?), correlation 272
function also calculated within thé* model[24].
In dynamics all hydrodynamic densmes are conserved.

Therefore, the conjugated densitigg andm, introduced in TABLE X. One-loop expressions of the dynamjcfunctions
the dynamic functiona(B7) do not require an independent and amplitude functions for liquids and mixtures.
dynamic renormalization. Thus we have

From Egs.(D16) and (D19) the flow equation

. Function Liquid Mixture
0 _7-UZy = -l
Go=Z,7 ¢, My=Z, M. (D10) {9 — 30452 — 3/4f2
2 2
As a consequence of the Galilean invariance of the equations O _ fe _ e
of motion, the mode couplings do not need independent 24 24(1-w3)
factors. The following renormalized couplings will be intro- G £2 f2
duced: ~16 ~ 16
g: l+e/2gAgl/2’ °g>| — K2+E/2g)|A81/2. (Dll) Et _f_tz B ftz
36 36(1—ws3)

The Onsager coefficients renormalize as
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dws 1
1SR g

ai 5 (D21)

follows for the time scale ratio introduced in E(B.37),
which implies immediately the fixed point valug; =0. The
mode coupling parametdy defined in Eq.(4.5 fulfills the
equation

df,

1 (d)
I a——zft(e-f—gr +§)\t+§¢). (D22

Because ofv} =0, 7{V* and¥ are same values as in pure
t

fluids. As a consequence, also the fixed point value of the
mode coupling parametdi is identical to the one in pure

fluids.

APPENDIX E: ONE-LOOP EXPRESSIONS

CRITICAL DYNAMICS IN MIXTURES
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. 1
IS u)=1, Bye=

FOuw=-= 5

7 (E2)
The one-loop results for the dynamicfunctions and the
dynamic zero-frequency amplitude functions are listed in
Table X. In order to allow a comparison we have given these
functions for pure liquids and for mixtures.

At finite frequencies the one-loop expressiorFaf(v, W)
is given by

In this appendix we will briefly summarize the explicit "W"ere we have introduced

results for all functions that are calculated in a perturbation
expansion in one-loop order. The statifunctions and am-

plitude functions are the same as for pure fllitlsbecause
the additional densityn, enters only quadratic if2.31) and

1 2
F+(U,Vv)=—z[v+v|nv
1 v2 vi
+ —Inv_——1Inv,|y,
vVy—U_ |Uy v_
(E3
oL 18 s E4
vea=5*\|3z] +iW. (E4

therefore does not contribute to the perturbation expansior,he amplitude function&(v,w) andE(v,w) are the same

The one-loop expressions are

u ¥? 3
§¢:0, frzz, gmzz?i guzi u, (El)

as given in[1] [see Egs(5.5 and (5.24) therein for pure
fluids, when one replaces and f2 there byw and f2/(1
—wg). For this reason we do not repeat the lengthy one-loop
expressions in this context.
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