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Critical dynamics in mixtures
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We derive the nonasymptotic expressions for the frequency- and temperature-dependent sound velocity and
sound absorption near a critical point in a mixture within renormalization group theory in one-loop order. The
dynamic model considered is an extension of the corresponding model for pure fluids including concentration
fluctuations. The theoretical result for the complex sound velocity is the same as at consolute points and
gas-liquid critical points reflecting universality. Differences observed in the experiments at the two critical
points mentioned are due to the different behavior of the sound velocity atTc , which is finite in mixtures and
zero in pure fluids, as well as due to nonasymptotic effects. Near the consolute point we compare our result
with the phenomenological theory of Ferrell and Bhattacharjee@Phys. Rev. B24, 4095~1981!; Phys. Rev. A
31, 1788 ~1985!# and near the gas-liquid critical point with experiments in the3He-4He mixture. A genuine
dynamic parameter not considered so far and related to the critical enhancement of the thermal conductivity
appears in the nonasymptotic expressions of the transport coefficients and the complex sound velocity. All
nonuniversal background parameters of the complex sound velocity are fixed by a comparison of the corre-
sponding theoretical expressions for the transport coefficients with experiments.@S1063-651X~98!10711-0#

PACS number~s!: 64.70.Fx, 64.60.Ht
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I. INTRODUCTION

This paper continues our calculation of nonasympto
transport properties within renormalization group~RG!
theory near critical points in fluids and mixtures. In Ref.@1#
the dynamics of pure fluids was considered including so
propagation. Here we extend the theory to mixtures nea
consolute point, as well as near a plait point~gas-liquid criti-
cal point!. All these critical points belong to the same un
versality class of modelH @2#, although the nonuniversa
behavior may be different@3#. Moreover, one does not a
ways reach asymptotics within the experimental region
in order to compare with experiments a nonasympto
theory describing the crossover to the background beha
is needed@4#.

Regarding the transport coefficients such as mass d
sion, thermal conductivity, thermal diffusion ratio, and she
viscosity, mainly mode coupling theory or variants ha
been used to describe the nonasymptotic behavior nea
critical points. At a plait point the mode coupling theory h
recently been further developed in Ref.@5#; the decoupled
mode theory was used in Refs.@6–9#. RG results were al-
ready used for the comparison in3He-4He mixtures near the
plait point in Refs.@10,11#. Near the consolute point sever
mixtures have been considered in Ref.@12# and the enhance
ment of the thermal conductivity in butoxyethanol-wat
mixtures could be accounted for@13#.

The critical sound propagation near a consolute point
been described by Ferrell and Bhattacharjee within a p
nomenological theory based on a generalization of the s
cific heat to finite frequencies taking into account the cau
and scaling properties of the dynamic functions involv
@14,15#. An earlier application of the RG theory to critica
sound at the consolute point used a reduced model neg
ing, e.g., the thermal diffusion ratio@16#. Recently, Onuki
used the bulk viscosity@17# for an intuitive derivation of the
PRE 581063-651X/98/58~5!/6246~29!/$15.00
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critical sound behavior@18# that is in agreement with our RG
calculations@19#.

Critical effects in transport properties near a second-or
phase transition are usually described by stochastic equa
neglecting the sound mode. It is well established that univ
sal quantities such as the critical exponents, in particular
dynamic critical exponentz, are not affected by the soun
mode. This is not generally true for nonasymptotic prop
ties. As an example we mention the superfluid transition
4He, where additional terms are present in the thermal c
ductivity when the sound mode is coupled to the other
drodynamic modes and the order parameter@20#. Near the
critical point in a pure liquid no additional contributions a
pear@1#.

The paper is organized as follows. In Sec. II we define
static Hamiltonian and the stochastic model equations. T
the relation between the model vertex functions and the
drodynamic transport coefficients is derived in Secs. III
and III B. The expressions for the sound mode are prese
in Sec. III C. Then in Sec. IV we compare our theoretic
results with experiment. In Sec. IV A we analyze the sh
viscosity near consolute and plait points for anilin
cyclohexane mixtures and3He-4He mixtures, respectively
Taking the dynamic parameters found in comparison w
experimental data, we predict the sound velocity and atte
ation near a plait point in Sec. IV B. Other hydrodynam
transport coefficients are compared with experiment in S
IV C. A comparison of our result with the phenomenologic
theory of Ferrell and Bhattacharjee is contained in Sec. V
discussion is given in Sec. VI. In Appendixes A–E furth
details of the theoretical calculations are given.

II. MODEL

The critical behavior of the hydrodynamic transport co
ficients corresponding to the slow heat and mass diffus
6246 © 1998 The American Physical Society
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PRE 58 6247CRITICAL DYNAMICS IN MIXTURES
modes at the plait point and at the consolute point have b
investigated recently@10,3,11#. These investigations hav
been performed in a reduced modelH8 based on the consid
erations of@2#, where the fast mode describing the critic
sound propagation has been neglected, although in@3# a
complete model including the sound propagation has alre
been derived. This model, which is applicable at the p
point as well as at the consolute point, is the basis for
considerations in the present work.

A. Statics

The derivation of the static functional, which determin
the critical behavior of the thermodynamic derivatives, p
ceeds in the following three steps, performed explicitly in@3#
and summarized here.

~i! According to methods in nonequilibrium statistic
thermodynamics@21#, a local probability density has bee
introduced, which is defined by an internal energy dens
the kinetic energy density, and the local conserved dens
~all densities per volume!. In liquid mixtures the local con-
served densities include the entropy densitys(x), the mass
densitiesr3(x),r4(x) of the two constituents of the mixtur
~e.g., 3He and 4He), and the momentum currentj 8(x). The
conjugated local intensive fields are the temperatureT(x),
the chemical potentials of the two constituentsm3(x),m4(x),
and the velocityv(x). Instead ofr3(x),r4(x) one also can
user3(x) and the mass densityr(x)5r3(x)1r4(x) as local
densities when the corresponding intensive fieldsm3(x) and
m4(x) are changed tom4(x) and the chemical potential dif
ferenceD(x)5m3(x)2m4(x). Assuming that the local den
sities are fluctuating around their thermodynamic aver
values, they may be written asa(x)5a1Da(x) with a
5s,r3 ,r,j 8, whereD denotes the fluctuating part. The loc
thermodynamic potential is then divided into an equilibriu
part and a part containing the contributions from the fluct
tions. A static functional is obtained by expanding the flu
tuation contribution into powers of the conserved densit
The correlations of the conserved densities are relate
thermodynamic derivatives~specific heat, compressibility
etc.! at fixed intensive fieldsT, D, m4 , andv.

~ii ! Instead of the fieldm4 it is more convenient to intro-
duce the experimental accessible field, the pressureP. This
can be achieved by introducing the entropy per masss(x)
5s(x)/r(x) and the mass concentrationc(x)5r3(x)/r(x)
in the static functional. The fluctuations of the densities
volume will then be replaced byDs(x)5rDs(x)
1sDr(x) andDr3(x)5rDc(x)1cDr(x). These new den-
sities have the advantage that they also appear in the hy
dynamic theory.

~iii ! In the next step we have to distinguish between
plait point and the consolute point since only the order
rameterf0 has to be taken into account in fourth order. T
order parameter is then decoupled from the remaining
densities~the momentum density trivially decouples from a
other densities!, which then represent secondary densit
qW 0

T5(q̊1 ,q̊2) in the quadratic part. This decoupling is o
tained by a shift of the order parameter and a restriction
the secondary densities to a subspace with fixed order pa
eter. A third-order term quadratic in the order parameter
linear in the two other densities remains.
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At the plait point the entropy per mass fluctuation is ch
sen as the order parameter

f0~x!5ANA@Ds~x!2^Ds~x!&#, ~2.1!

while at the consolute point the concentration fluctuat
represents the order parameter

f0~x!5ANA@Dc~x!2^Dc~x!&#. ~2.2!

The secondary densities are defined as

qW 0~x!5ANADyW ~x!2QW f0~x!, ~2.3!

whereyW T5(c,r) andQW 5(]yW /]s)D,P at the plait point, and
yW T5(s,r) and QW 5(]yW /]c)T,P at the consolute point. The
Avogadro numberNA has been introduced for convenien
to turn the Boltzmann constantkB into the gas constantR in
all expressions.

Now both cases can be treated by one form of the st
functional

H5E ddxH 1

2
t̊f0

2~x!1
1

2
@“f0~x!#2

1
1

2
qW 0

T~x!AJqW 0~x!1
1

2
aj j

2~x!1
ů̃

4!
f0

4~x!

1
1

2
gW̊ q

TqW 0~x!f0
2~x!2hW̊ q

TqW 0~x!J . ~2.4!

The overcircle on the parameters and the subscript 0 on
densities denote unrenormalized quantities. The static fu
tional has the same structure as in pure liquids@1#, but now
with two secondary densitiesqW 0

T5(q̊1 ,q̊2). As a conse-
quence, the parameters

AJ5S a11 a12

a12 a22
D , gW̊ q5S g̊1

g̊2
D , hW̊ q5S h̊1

h̊2
D ~2.5!

are matrices and vectors instead of scalars. The momen
density appearing in Eq.~2.4! is also rescaled by the
Avogadro numberj5ANAD j 8. The parameteraj follows
from the expression for the kinetic energy and readsaj

51/RTr. The coefficients of the matrixAJ are the lowest-
order contributions to the static two-point vertex functio
and therefore do not contain critical effects. They are rela
to background values of thermodynamic derivatives at
plait and the consolute point, respectively. Their explicit v
ues are given in Appendix A.

A static functional of the same structure as Eq.~2.4! is
used in the renormalization group theory of thel transition
in 3He-4He mixtures@22,23# without coupling to the sound
mode and at thel transition in pure4He when the first sound
propagation is included@20#. The treatment of Eq.~2.4! is
therefore well known and the main relations used in the f
lowing are briefly summarized.

Since the static critical behavior of mixtures belongs
the same universality class as pure fluids the critical prop
ties derived with Eq.~2.4! can be related to those of thef4

model@24#. These relations are found by eliminating the se



u

r
lu

o
al

io
e
tw

lin
n
ur
th
a

io

e

n

a-
m

ies

he
en-

e
-

cs

. It

ed.

se

es

6248 PRE 58R. FOLK AND G. MOSER
ondary densities, which is possible since they appear only
to second order. The coefficients of the remainingf4 model

Hf5E ddxH 1

2
r̊f0

2~x!1
1

2
@“f0~x!#21

ů

4!
f0

4~x!J
~2.6!

are related to the parameters in Eq.~2.4! by

ů5 ů̃23gW̊ q
TAJ21gW̊ q , r̊ 5 t̊1gW̊ q

TAJ21hW̊ q . ~2.7!

A consequence of the reducibility of Eq.~2.4! is that the
correlations of the secondary densitiesqW 0 are related to orde
parameter correlation functions. For the expectation va
and the two-point correlation function one gets

^qW 0&5AJ21~hW̊ q2gW̊ q^
1
2 f0

2&!, ~2.8!

^qW 0^ qW 0&c5AJ211dW̊ q^ dW̊ q^
1
2 f0

2 1
2 f0

2&c . ~2.9!

dW̊ q5AJ21gW̊ q has been introduced in Eq.~2.9!. The subscript
c in Eq. ~2.9! denotes the cummulant̂ ab&c5^ab&
2^a&^b&. Note that the correlations on the left-hand sides
Eqs.~2.8! and ~2.9! are calculated with the static function
containing Eq.~2.4!, while on the right-hand side Eq.~2.6! is
used. Therefore, thef2 correlations are functions ofů only.
All secondary density correlation functions in Eq.~2.9! con-
tain the same singular order parameter correlation funct
This correlation function may be eliminated in two of th
equations by inserting the third one. As a result, one gets
relations between the background parameters

a112
g̊1

g̊2
a125k1 , a222

g̊2

g̊1
a125k2 . ~2.10!

k1 , k2 , and the ratio of the twog couplings may be ex-
pressed by thermodynamic derivatives along the critical
comparing the corresponding thermodynamic relatio
These derivatives are smooth functions of the temperat
finite at Tc , and therefore will be treated as constants in
critical region. Their connection to thermodynamic deriv
tives is given in Appendix A. From the static functional~2.4!
it follows that the secondary densitiesqW 0 have finite expec-
tation values. In order to perform the perturbation expans

it is convenient to introduce conjugated external fieldshW̊ q in

Eq. ~2.4!. The values ofhW̊ q are then adjusted to eliminate th
expectation values ofqW 0 . Equation ~2.8! implies that the

conjugated external fields have to behW̊ q5gW̊ q^
1
2f0

2&.
The Fourier transformed correlation functions of the de

sities at the wave vectork50,

^ab&c[^ab&c~k50!5E ddx^a~x!b~0!&c

5E ddx^Da~x!Db~0!&c , ~2.11!

with a,b5f0 ,q̊1 ,q̊2 , are related to thermodynamic deriv
tives containing the critical singularities. The order para
p
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eter correlation is related to a strongly divergent~exponent
g! thermodynamic derivative, while the secondary densit
correspond to weakly divergent~exponent a! thermody-
namic derivatives. The relations for the plait point and t
consolute point are presented in Appendix A. The mom
tum density separates into a longitudinal componentj l(x),
with the property“3 j l(x)50, and an orthogonal transvers
componentj t(x), with ¹ j l(x)50. Thus the quadratic mo
mentum density fluctuations in Eq.~2.4! may be written as
j2(x)5 j l

2(x)1 j t
2(x).

B. Dynamics

From generalized Poisson bracket relations@25# and the
dissipative properties of liquid mixtures in hydrodynami
@26# a set of dynamic equations has been derived@3#, which
allows the calculation of critical sound propagation effects
represents an extension of modelH8 @2#, where only the
slow heat and concentration diffusion modes are includ
The equations read

]f0

]t
5G̊¹2

dH

df0
1LW̊ q

T¹2
dH

2qW 0
2g̊~“f0!S dH

d j l
1

dH

d j t
D1Qf ,

~2.12!

]qW 0

]t
5LW̊ q¹2

dH

df0
1LJ̊ q¹2

dH

dqW 0
2g̊~“qW 0!S dH

d j l
1

dH

d j t
D

2~cW̊q1gW̊ lf01gJ̊qqW 0!“
dH

d j l
1QW q , ~2.13!

] j l

]t
5l̊l¹

2
dH

] j l
2cW̊q

T
“

dH

dqW 0
2gW̊ l

T
“S f0

dH

dqW 0
D2“S qW 0

TgJ̊q

dH

dqW 0
D

1g̊~12T!F ~“f0!
dH

df0
1~“qW 0!T

dH

dqW 0
G

2g̊~12T!(
k

F j k“
dH

d j k
2¹kj

dH

d j k
G1Ql , ~2.14!

] j t

]t
5l̊t¹

2
dH

d j t
1g̊T F ~“f0!

dH

df0
1~“qW 0!T

dH

dqW 0
G

2g̊T(
k

F j k“
dH

d j k
2¹kj

dH

d j k
G1Q t , ~2.15!

where T is the projector to the direction of the transver
momentum density. The static functionalH is given by Eq.
~2.4!. Assuming a Markovian process, the fluctuating forc

@Q i #
T5(Qf ,QW q

T ,Q l ,Q t) fullfill the Einstein relations

^@Q i #~x,t ! ^ @Q j #~x8,t8!&52@L i j #d~ t2t8!d~x2x8!,
~2.16!

with the matrix
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@L i j #

5S 2G̊¹2
2LW̊ q

T¹2 0 0

2LW̊ q¹2 2LW̊ q¹2 0 0

0 0 2l̊l¹
2 0

0 0 0 2l̊t¹
2

D . ~2.17!

The Onsager coefficient vector and the Onsager coeffic
matrix in Eqs.~2.12! and ~2.13! are

LW̊ q5S L̊

L̊f
D , LJ̊ q5S m̊ L̊12

L̊12 l̊
D . ~2.18!

The mode coupling vectors and the mode coupling ma
introduced in Eqs.~2.13! and ~2.14! are defined as

cW̊q5S 0
c̊D , gW̊ l5S 0

g̊l
D , gJ̊g5S 0 0

0 g̊D , ~2.19!

with the parameters c̊5RTr, g̊5RT/ANA, and g̊l

5RTQ2 /ANA. The Onsager coefficients in the momentu
density equations~2.14! and ~2.15! are related to the back
ground values of the shear viscosityh̄ (0) and the bulk vis-
cosity z (0) by l̊l5RT(z (0)1 4

3 h̄ (0)) and l̊t5RTh̄ (0).
In hydrodynamics only three transport coefficients, t

thermal conductivitykT , the thermal diffusion coefficien
kT , and the mass diffusion coefficientD, appear in the equa
tions for the entropy and the concentration. The hydro
namic equation for the mass density is the continuity eq
tion, which does not involve any dissipation. As
consequence, only three (G̊, L̊, and m̊) of the six Onsager
coefficients in Eqs.~2.12!–~2.15! are independent. The re
maining three coefficients result from the transformat
~2.3! and they are determined by

L̊f52Q2G̊, l̊5Q2
2G̊, L̊1252Q2L̊. ~2.20!

Consequently, the fluctuating forces in Eq.~2.16! are not
independent. Nevertheless, a dynamic functional analog
to @27# may be derived@1#.

The hydrodynamic Onsager coefficientsa, b, andg de-
termine the mass currenti and heat currentq as a function of
the temperature gradient and the chemical potential grad
@26#:

i52b“T2a“D, q2D i52g“T2Tb“D.
~2.21!

These coefficients are related to the hydrodynamic trans
coefficients by

a5rS ]c

]D D
T,P

~0!

D ~0!, ~2.22!

b5rD ~0!FkT
~0!

T
1S ]c

]TD
D,P

~0! G , ~2.23!
nt

x

e

-
-

us

nt

rt

g5kT
~0!1rTD~0!S ]D

]c D
T,P

~0! FkT
~0!

T
1S ]c

]TD
D,P

~0! G2

. ~2.24!

At the plait point the independent model Onsager coe
cients G̊, L̊, and m̊ are related to the hydrodynamic coeffi
cients by

G̊5
Rg

r2 , L̊5
RT

r2 S b2
g

T
Q1D , ~2.25!

m̊5
RT

r2 S a22bQ11
g

T
Q1

2D . ~2.26!

At the consolute point one has

G̊5
RTa

r2 , L̊5
RT

r2 ~b2aQ1!, ~2.27!

m̊5
RT

r2 S g

T
22bQ11aQ1

2D . ~2.28!

In the present model Eqs.~2.22!–~2.24! are used in the non
critical background indicated by~0! at the thermodynamic
derivatives and hydrodynamic transport coefficients. In mo
coupling theories@28,5# the same relations are extended in
the critical region by replacing the background values by
corresponding fully divergent quantities.

C. Elimination of one static coupling g

Equations~2.8! and ~2.9! are basic relations in the ex
tended static model~2.4! because they show that all singu
larities in the extended static model are determined by
singularities of thef4 model. Therefore, these relations ha
to be invariant under renormalization, which means that th
have to be valid also for the renormalized quantities. Ho
ever, this implies a matrix structure of the renormalizati
coefficients@23#. In order to avoid this matrix renormaliza
tion it is convenient to introduce transformed secondary d

sities mW̊ T5(m̊1 ,m̊2) where only one density~for instance,
m̊2) is coupled to the order parameter, while the second d
sity appears only in quadratic order in the static function
This introduces densities ‘‘orthogonal’’ and ‘‘parallel’’ to
the critical line. Whereas all quantities corresponding to
uncoupled density are considered along a path parallel to
critical line and therefore are finite~constant in the smal
critical region!, the quantities corresponding to the remaini
density are considered along a path perpendicular to the c
cal line containing critical singularities@29#. The new densi-
ties are introduced by a transformation

mW̊ 5MJ qW̊ , MJ 5S M11 M12

M21 M22
D , ~2.29!

where the components of the matrix are determined by th
conditions: ~i! the nondiagonal coefficient of the Gaussi
part in the transformed static functional has to vanish,~ii ! the
g coupling of m̊1 has to vanish, and~iii ! det(MJ )51. The
resulting matrix coefficients are
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M1151, M225
k1

k11S g̊1

g̊2
D 2

k2

,

M215
g̊1

g̊2
M22, M125

g̊1

g̊2

k2

k1
, ~2.30!

where k1 and k2 have been introduced in Eq.~2.10!. The
transformation matrix may be expressed by thermodyna
derivatives using Table VII. The explicit expressions d
pending on the type of the critical point are listed in Appe
dix A. The transformed static functional obtained by inse
ing Eq. ~2.29! into Eq. ~2.4! reads

H5E ddxH 1

2
t̊f0

2~x!1
1

2
@“f0~x!#2

1
1

2
a1m1

2~x!1
1

2
a2m̊2

2~x!1
1

2
aj j

2~x!1
ũ

4!
f0

4~x!

1
1

2
g̊mm̊2~x!f0

2~x!2h̊mm̊2~x!J . ~2.31!

The secondary densities are decoupled in Eq.~2.31!; there-
fore, the corresponding correlation functions are simply
termined by

^m̊1m̊1&c5
1

a1
, ^m̊1m̊2&c50 , ~2.32!

^m̊2m̊2&c5
1

G̊m2m2

5
1

a2
S 11

g̊m
2

a2
K 1

2
f0

2 1

2
f0

2L
c
D ,

~2.33!

whereG̊m2m2
is a static two-point vertex function containin

only one-particle irreducible contributions. The seco
equality in Eq.~2.33! follows from Eq.~2.9!. From the ther-
modynamic expressions for the coefficients of the matrixAJ ,
the correlation functions, and the transformation matrixMJ ,
the corresponding thermodynamic expressions of the tr
formed correlation functions~2.32! and ~2.33! can be calcu-
lated, which are also given explicitely in Appendix A for th
plait point and the consolute point. The transformation~2.29!
leads to dynamic equations of the same structure as
~2.12!–~2.15!, but with transformed Onsager coefficients a
mode couplings

LW̊ m5S L̊̂

L̊̂f

D 5MJ LW̊ q , lJ̊m5S m̊̂ L̊̂12

L̊̂12 l̊̂
D 5MJ LJ̊ qMJ T,

~2.34!

ĝW̊ l5S g̊l1

g̊l2
D5MJ gW̊ l , gJ̊m5S g̊11 g̊12

g̊21 g̊22
D 5MJ gJ̊qMJ 21,

~2.35!

cW̊m5S c̊1

c̊2
D5MJ cW̊q . ~2.36!
ic
-
-
-

-

s-

s.

III. THEORETICAL RESULTS

A. General relations

In order to identify the hydrodynamic transport coef
cients one has to relate them to certain two-point ver
functions, calculated within a perturbation expansion of
dynamic functional given in Appendix B. We proceed as
the case of pure liquids@1# considering the hydrodynami
determinantDH . The linearized hydrodynamic equations
mixtures read~we use the notation of@26#!

]s

]t
5H DkT

T S ]D

]c D
T,P

FkT

T
1S ]c

]TD
D,P

G1
xT

rTJ ¹2T

1DS ]D

]c D
T,P

FkT

T
1S ]c

]TD
D,P

GF¹2c2S ]c

]PD
T,D

¹2PG ,

~3.1!

]c

]t
5

DkT

T
¹2T1D¹2c2DS ]c

]PD
T,D

¹2P, ~3.2!

]r

]t
52“ j l , ~3.3!

] j l

]t
52“P1

1

r S z1
4

3
h̄ D¹2j l , ~3.4!

] j t

]t
5

h̄

r
¹2j t . ~3.5!

Equations~3.1!–~3.5! include three diffusion modes and on
sound mode. Fourier transforming the above equations
calculating the coefficient determinant to lowest order ofv
andk2, one gets

DH5~2 iv1Dtk
2!@2v22~D1Dc!ivk2

1DDTk4#~v22cs
2k21Dsivk2!, ~3.6!

with the diffusion coefficients defined as

Dt5
h̄

r
, DT5

kT

rCPc
, Dc5DT1

DkT
2

rCPc
S ]D

]c D
T,P

,

~3.7!

whereCPc5T(]s/]T)c,P is the isobaric specific heat at con
stant concentration.DT and Dc are two different types of
thermal diffusion coefficients.DT denotes the thermal diffu
sion at mass flow zero (i50), whereasDc denotes it at zero
concentration gradient (“c50). The sound velocitycs and
the sound diffusion coefficientDs in the sound mode are

cs
25S ]P

]r D
s,c

, ~3.8!
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Ds5
1

r S z1
4

3
h̄ D1S 1

CVc
2

1

CPc
D kT

r

1
D

r2 S ]P

]r D
s,c

S ]D

]c D
T,P

F S ]r

]D D
T,P

1S ]r

]s D
c,P

kT

T G2

,

~3.9!

with the isochoric specific heatCVc5T(]s/]T)c,r . Equa-
tion ~3.6! has to be compared with the determinant of t
dynamical two-point vertex function of the model equatio
in the hydrodynamic limit (v→0, k→0) keeping the lowes
orders in the frequency and the wave vector. We defer
definitions of these vertex functions to Appendix B. How
ever, it should be mentioned that the structure of the exp
sions obtained is the same at the plait point and at the c
solute point and that it is invariant under the transformat
of the secondary densities fromqW 0 to mW 0 @Eq. ~2.29!#. Cal-
culating the determinant of the matrix~B17!, one gets the
following structure, which is quite similar to Eq.~3.6!:

D th5~2 iv1Dtk
2!@2v22~D81D9!ivk2

1D8D9k4#~v22Cs
2k21Dsivk2!. ~3.10!

The difference is that the coefficients in Eq.~3.10!, obtained
by collecting contributions of the corresponding powers ink
andv, are now complex quantities in general. One has

Cs
252@G̊ã#T@G̊a#, ~3.11!

Ds5 f̊ l l̃ 1
@G̊ã#T@FI̊ aã#@G̊a#

@G̊ã#T@G̊a#
, ~3.12!

D81D95Tr@FI̊ aã#2
@G̊ã#T@FI̊ aã#@G̊a#

@G̊ã#T@G̊a#
, ~3.13!

D8D95F̊aãTr@FI̊ aã#2P̊F1
@G̊ã#T@FI̊ aã#2@G̊a#

@G̊ã#T@G̊a#
,

~3.14!

Dt5 f̊ t t̃ . ~3.15!

In Eq. ~3.14! the quantitiesF̊aã andP̊F are defined by

F̊aã5Tr@FI̊ aã#2 f̊ ff̃2
@G̊ã#T@FI̊ aã#@G̊a#

@G̊ã#T@G̊a#
, ~3.16!

P̊F5TrFJ̊aã
2 1det FJ̊aã2FW̊ ã

TFW̊ aa . ~3.17!

The vectors@G̊a#,@G̊ã# and the matrix@FI̊ aã# are introduced
in Eqs. ~B17!–~B20!. Analogously to pure fluids@1#, the
temperature- and frequency-dependent sound velo
cs(t,v) and sound diffusion coefficientDs(t,v) are obtained
by comparing the dispersion relationv25(cs

21 ivDs)k
2

from Eq. ~3.6! with v25(Cs
21 ivDs)k

2 from Eq. ~3.10!.
From the real and imaginary parts we get
e

s-
n-
n

ty

cs
2~ t,v!5Re@Cs

2~ t,v!2 ivDs~ t,v!#, ~3.18!

Ds~ t,v!52
1

v
Im@Cs

2~ t,v!2 ivDs~ t,v!#. ~3.19!

These two quantities determine the experimentally obser
sound attenuationas(t,v),

as~ t,v!5
v2Ds~ t,v!

2cs
3~ t,v!

. ~3.20!

The frequency-dependent shear viscosity

h̄~ t,v!5rDt~ t,v! ~3.21!

follows from Eqs.~3.7! and ~3.15! and is complex at finite
frequencies. The hydrodynamic transport coefficients, wh
concern the slow heat and diffusion mode, will be calcula
at zero frequency. In this case Eqs.~3.13! and~3.14! reduce
to real expressions and one may write

D~ t !1Dc~ t !5H Tr@FI̊ aã#2
@G̊ã#T@FI̊ aã#@G̊a#

@G̊ã#T@G̊a#
J

v50

,

~3.22!

D~ t !Dc~ t !5H F̊aãTr@FI̊ aã#2P̊F

1
@G̊ã#T@FI̊ aã#2@G̊a#

@G̊ã#T@G̊a#
J

v50

. ~3.23!

All equations considered so far in this section are indep
dent of the type of critical point, which means that expre
sions ~3.18!–~3.23! are valid at the plait point and at th
consolute point. We would also like to mention that simil
structures appear in other models with several second
densities, such as3He-4He mixtures near the superfluid tran
sition or magnetic liquids.

B. Specific relations for the consolute and plait point

In order to obtain explicit expressions for the slow hydr
dynamic transport coefficients, the thermal conductivitykT ,
the thermal diffusion ratiokT , and the mass diffusion coef
ficient D, one needs a third equation in addition to Eq
~3.22! and ~3.23!. The zeroth order of the dynamic orde
parameter vertex functionf̊

ff̃

(0)
appears in the Gaussian pa

of the dynamic functional. From the hydrodynamic equatio
~3.1!–~3.3! one can derive a corresponding equation for
order parameter from the definitions~2.1!–~2.3!, where the
coefficient of¹2f0 appears in the Gaussian part of a cor
sponding ‘‘hydrodynamic’’ functional. Identifying these tw
Gaussian parts leads to the third equation. This identifica
can be extended to any order of perturbation expansion s
the critical asymptotic behavior of the hydrodynamic tran
port coefficients and the thermodynamic derivatives appe
ing in the relation reproduce the correct asymptotic behav
of the vertex function. As the order parameter correspond
different densities at the plait point and at the consol
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point, respectively, the order parameter vertex function
related to different expressions in the hydrodynamic tra
port coefficients. At the plait point the relation reads

S ]s

]TD
c,P

DT~ t !1S ]D

]c D
T,P

D~ t !FkT~ t !

T
1S ]c

]TD
D,P

G2

5S ]s

]TD
D,P

f̊ ff̃uv50 , ~3.24!

while at the consolute point one simply has

D~ t !5 f̊ ff̃uv50 . ~3.25!

From Eqs.~3.22!, ~3.23!, and ~3.24!, or Eq. ~3.25!, respec-
tively, the temperature-dependent hydrodynamic trans
coefficients can be extracted. The mass diffusion and
thermal diffusion ratio at the plait point are

D~ t !5S ]D

]c D
s,P

H S ]c

]D D
T,P

F̊aãuv50

1S ]c

]s D
D,P

2 S ]s

]TD
D,P

f̊ ff̃uv50

12S ]c

]s D
D,P
AS ]s

]TD
D,P

S ]c

]D D
s,P

W̊aãuv50J ,

~3.26!

kT~ t !

T
5

1

D~ t ! H S ]c

]TD
D,P

f̊ ff̃uv50

1AS ]s

]TD
D,P

S ]c

]D D
s,P

W̊aãuv50J 2S ]c

]TD
D,P

,

~3.27!

where we have introduced the combination
n
n

in

rt
c
th
on
ic
s
-

rt
e

W̊aã5F̊aã~ f̊ ff̃2Tr@FI̊ aã# !1P̊F2
@G̊ã#T@FI̊ aã#2@G̊a#

@G̊ã#T@G̊a#
.

~3.28!

At the consolute point the thermal diffusion ratio is given

kT~ t !

T
5

1

D~ t ! AS ]s

]TD
c,P

S ]c

]D D
T,P

W̊aãuv50. ~3.29!

The expression for the thermal conductivity, which follow
immediately from Eq.~3.23!, is the same for both the plai
point and the consolute point. We get

kT~ t !

rT
5

1

D~ t !
@F̊aãuv50 f̊ ff̃uv502W̊aãuv50#. ~3.30!

We note that the expressions for the hydrodynamic coe
cients~3.26!, ~3.27!, and~3.30! for the plait point or~3.25!,
~3.29!, and ~3.30! for the consolute point are the same f
both the static functional~2.4! with the secondary densitiesq
and the transformed functional~2.31! with the secondary
densitiesm. The same property holds for the sound veloc
~3.18! and the sound diffusion coefficient~3.19!. The reason
for this is that all terms appearing in Eqs.~3.11!–~3.15!,
from which the transport coefficients have been calculat
are invariant under the transformation~2.29!.

C. Critical sound velocity and sound attenuation

In order to decouple the fast sound mode from the sl
heat and mass diffusion modes the dynamical model will
considered in the limitc̊ →` @Eq. ~2.19!#. This limit ensures
that the sound mode is no critical mode. Otherwise the
namical model could not be renormalized. In the limitc̊
→` the explicit appearance of vertex functions in the tra
port coefficients differs depending on the secondary dens
used. Explicit expressions for both cases are presente
Appendix C. Inserting expressions~C7!–~C10! into Eqs.
~C3! and ~C4!, the complex functionsCs

2 andDs simplify to
Cs
2~ t,v!5aj@a1c̊1

21 c̊2
2G̊m2m2

~v!#, ~3.31!

Ds
2~ t,v!5 f̊ l l̃ ~v!1

a1
2c̊1

2m̊̂12a1c̊1c̊2G̊m2m2
~v!L̂

˚
1 c̊2

2G̊m2m2

2 ~v!l̂
˚

a1c̊1
21 c̊2

2G̊m2m2
~v!

. ~3.32!
the
the

co-
n-

el.
The perturbation theory only contributes to the functio
f̊ l l̃ (v) andG̊m2m2

(v). At zero frequency the vertex functio

G̊m2m2
(v) reduces to the static vertex function introduced

Eq. ~2.33! and both quantities turn into real functions. Inse
ing the definition of the transformed parameters, the ba
ground identification of the Onsager coefficients, and
thermodynamic expression for the static vertex functi
Eqs. ~3.31! and ~3.32! reduce to the correct hydrodynam
coefficients
s

-
k-
e
,

lim
v→0

Cs
2~ t,v!5cs

2~ t !, lim
v→0

Ds~ t,v!5Ds~ t !, ~3.33!

wherecs
2 andDs have been given in Eqs.~3.8! and~3.9!. The

thermodynamic expressions at the plait point as well as
corresponding expressions at the consolute point lead to
same result.

So far we have expressed the hydrodynamic transport
efficients and the sound velocity and sound diffusion by u
renormalized vertex functions of the dynamical mod
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These contain singularities that have to be removed by re
malization. Expressing the unrenormalized quantities
renormalized ones, the critical temperature dependence is
tained. The procedure is equal to the pure fluid case. H
ever, the static functional for mixtures~2.31! contains an
additional densitym̊1 . It appears only in Gaussian orde
thus no perturbational contributions leading to new dim
sional singularities contribute to the corresponding ver
functions and it does not need any new renormalization
tor. Thus all static renormalization factors are the same a
pure fluids. From Eqs.~C7! and~C10! it can be seen that th
dynamic perturbation theory does not contribute to the O
sager coefficientsm̊,L̊ and the couplingc̊1 that appear in
additional to the pure fluid case in the dynamics of mixtur
Also, in dynamics no new independent renormalization
needed. The whole renormalization procedure in the cur
model concerningf0 and m̊2 is equal to the procedure fo
the densitiesf0 andq0 in pure fluids, which has been exten
sively described in@1#. For this reason it will not be repeate
in this context. A short summary of the definitions of th
renormalization coefficients and the correspondingz func-
tions is given in Appendix D~of course the notation has bee
accommodated to the current context!.

Inserting the renormalized functions and parameters
Eqs. ~3.31! and ~3.32! is particularly easy since Eqs.~C3!
and ~C4! contain no explicit renormalization factors. Ther
fore, the unrenormalized vertex function may be imme
ately replaced by their renormalized counterparts. Beca
the separation of the unrenormalized vertex functions~B21!
into static and dynamic parts is also valid for the renorm
ized counterparts, one gets

Cs
2~ t,v!5~k l !6aj@a1c1

2~ l !1c2
2~ l !Ĝm2m2

„v~ t,l !,w̃~ l !…#,
~3.34!

Ds~ t,v!5~k l !2 f̂ l l̃ „v~ t,l !,w̃~ l !…1
~k l !8aj

Cs
2~ t,v!

@a1
2c1

2~ l !m̂~ l !

12a1c1~ l !c2~ l !

3Ĝm2m2
„v~ t,l !,w̃~ l !…L̂12~ l !

1c2
2~ l !Ĝm2m2

2
„v~ t,l !,w̃~ l !…l̂~ l !#. ~3.35!

k is a reference wave number that is usually identified
k5j0

21, wherej0 is the critical correlation length amplitude
The parametersv and w̃ are analogously defined as in th
case of pure liquids,

v~ t,l !5
j22~ t !

~k l !2 , w̃~ l !5
v

2G~ l !@12w3
2~ l !#~k l !4 .

~3.36!

The parameterw̃ now contains an additional time scale rat
w3 . It is defined as

w3
2~ l !5

L̂2~ l !

G~ l !m̂~ l !
. ~3.37!

From the flow equations given in Eq.~D19! we can imme-
diately write
r-
y
b-
-

-
x
c-
in

-

.
s
nt

in

-
se

l-

y

m̂~ l !5~k l !22m̊̂,

L̂~ l !5~k l !21L̊Zf
21/2expS 1

2 E
1

l dx

x
zfD . ~3.38!

The solution of Eq.~D16! for the order parameter Onsag
coefficient can be separated into a static and a dynamic p
We can write

G~ l !5Zf
21expS E

1

l dx

x
zfDG~d!~ l !, ~3.39!

whereG (d)( l ) satisfies the equation

l
dG~d!

dl
5G~d!zG

~d! , G~d!~1!5~ZG
~d!!21G̊. ~3.40!

Inserting Eqs.~3.38! and ~3.39! into Eq. ~3.37!, the time
scale ratio can be rewritten as

w3
2~ l !5

L̊̂2

G~d!~ l !m̊̂
. ~3.41!

From Eqs.~D14!, ~D19!, ~D15!, and~D20! the renormalized
couplingsc1( l ) andc2( l ) read

c1
2~ l !5~k l !26c̊1

2,

c2
2~ l !5~k l !26c̊2

2Zm2

21 expS E
1

l dx

x
zm2D . ~3.42!

The renormalized Onsager coefficients appearing in E
~3.34! and ~3.35! can be obtained analogously from Eq
~D14!, ~D19!, ~D12!, and~D16!. One gets

l̂~ l !5~k l !22l̊̂Zm2

21expS E
1

l dx

x
zm2D , ~3.43!

L̂12~ l !5~k l !22L̊̂12Zm2

21/2expS 1

2 E
1

l dx

x
zm2D . ~3.44!

The amplitude functionĜm2m2
„v( l ),w̃( l )… in Eqs.~3.34! and

~3.35! has the general structure

Ĝm2m2
„v~ l !,w̃~ l !…5a2@12g2~ l !G1„v~ l !,w̃~ l !…#

~3.45!

and reduces in the zero-frequency limit to

lim
v→0

Ĝm2m2
„v~ l !,w̃~ l !…5Ĝm2m2

~s!
„g2~ l !,u~ l !…

5a2@12g2~ l !G1
~s!
„g2~ l !,u~ l !…#,

~3.46!

whereĜm2m2

(s) is the corresponding static function. The fun

tions G1 and G1
(s) , respectively, accumulate the contrib

tions of the perturbation expansion. The static couplinggm
always enters witha2 as a reduced coupling
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g25
gm

2

a2
, ~3.47!

which will be used in the following. The functionsG1 is
related to the functionF1 by

G1„v~ l !,w̃~ l !…5
F1„v~ l !,w̃~ l !…

11g2~ l !F1„v~ l !,w̃~ l !…
, ~3.48!

which is the amplitude function of the corresponding cor
lation function. The dynamic vertex functio
Gm2m2

„v( l ),w̃( l )… can then be expressed byF1„v( l ),w̃( l )…
analogously to the static case@see Eq.~D9!#

Ĝm2m2
„v~ l !,w̃~ l !…5

a2

11g2~ l !F1„v~ l !,w̃~ l !…
. ~3.49!

The Z factor and the exponential function in Eqs.~3.42!–
~3.44! can be replaced by static functions. From Eq.~D8! we
get

Zm2

21expS E
1

l dx

x
zm2D 5

G̊m2m2

~s! ~j22,g̊2,ů!

Ĝm2m2

~s!
„g2~ l !,u~ l !…

. ~3.50!

Because the unrenormalized static vertex functions are
lated to thermodynamics, which is shown in Appendix
they may be replaced by thermodynamic derivatives. T
amplitude function in the denominator of Eq.~3.50! has to be
calculated in perturbation expansion. Inserting the relati
~3.42!–~3.50! into Eqs.~3.34! and ~3.35! we get

Cs
2~ t,v!5aj@a1c̊1

21 c̊2
2G̊m2m2

~s! Vs„v~ l !,w̃~ l !…#, ~3.51!

Ds~ t,v!5~k l !2 f̂ l l̃ „v~ l !,w̃~ l !…

1
aj

Cs
2~ t,v!

$a1
2c̊1

2m̊̂12a1c̊1c̊2G̊m2m2

~s!

3Vs„v~ l !,w̃~ l !…L̂
˚

12

1 c̊2
2@G̊m2m2

~s! Vs„v~ l !,w̃~ l !…#2l̊̂%. ~3.52!

In order to shorten the notation we have introduced

Vs„v~ l !,w̃~ l !…5
11g2~ l !F1

~s!
„u~ l !…

11g2~ l !F1„v~ l !,w̃~ l !…
. ~3.53!

The first part on the right-hand side in Eq.~3.52! describes
the contribution of viscosities to the sound attenuation. T
dynamic amplitude function of the longitudinal momentu
density is

f̂ l l̃ „v~ l !,w̃~ l !…5ajl l~ l !@11El„v~ l !,w̃~ l !…#. ~3.54!

The functionEl collects the contributions due to perturbatio
expansion. From the flow equation~D18! follows the solu-
tion

l l5~k l !22l̊lZl l

21expS E
1

l dx

x
zl l D ~3.55!
-

e-
,
e

s

e

for the Onsager coefficientl l .
The theoretical expressions for the sound velocity and

sound attenuation are obtained by inserting Eqs.~3.51! and
~3.52! into Eqs.~3.18! and~3.19!. The last step remaining is
the specification of a relation known as the ‘‘matching co
dition,’’ which connects the flow parameter l with the re
duced temperaturet and frequencyv. Functions of l turn into
functions of t and v. The relation will be chosen in such
way as to guarantee finite-amplitude functions in the criti
limits t→0 andv→0. A further condition is that the relation
reduces to the well known static matching condition

j22~ t !

~k l !2 51 ~3.56!

in the limit v→0. Because the structure of the perturbati
expansion is the same as in pure fluids, we can choose
matching condition at finite frequencies

US j22~ t !

2~k l !2D 2

1 iw̃~ l !U5 1

4
. ~3.57!

The only difference from the corresponding relation in pu
fluids @1# is the appearance ofw̃, which includes the addi-
tional time scale ratiow3 , instead ofw. Of course this
matching condition coincides with the relation~3.56! at zero
frequency as discussed before. Inserting the definition~3.36!
into Eq. ~3.57! we get

j28~ t !1S 2v

G~ l !@12w3
2~ l !# D

2

5~j0
21l !8. ~3.58!

In Eq. ~3.58! we have also inserted the standard identificat
for the reference wave numberk5j0

21. Equation~3.58! rep-
resents an implicit equation for the flow parameterl
5 l (t,v). The critical limit t→0, which impliesj21(t)→0,
corresponds now to a finite flow parameter valuel c(v) tend-
ing to zero at vanishing frequency.

The asymptotic critical temperature behavior of the sou
velocity and the sound attenuation is obtained by conside
the limit v→0 in Eqs. ~3.51! and ~3.52!. In this limit
Vs51 and Cs

2 andDs turn into real quantities. From Eqs
~3.18! and ~3.51! we get immediately

cs
2~ t,v50!5Cs

2~ t,v50!5aj@a1c̊1
21 c̊2

2G̊m2m2

~s! #5S ]P

]r D
s,r

.

~3.59!

The last equality in Eq.~3.59! is obtained using the thermo
dynamic expression for the vertex function, which is given
Appendix A, and the definitions of the parameters at the p
point or at the consolute point, respectively. Because
thermodynamic derivative in Eq.~3.59! is finite at Tc @29#,
the sound velocity stays finite also in the critical limit, whic
is in contrast to pure fluids where the sound velocity va
ishes proportional tota/2 in the asymptotic region. As the
imaginary part ofCs

2 vanishes at zero frequency the lim
v→0 has to be performed carefully in Eq.~3.19! to obtain
the asymptotic critical behavior ofDs . We have to calculate
the expression
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Ds~ t,v50!52 lim
v→0

Im@Cs
2~ t,v!#

v
1Ds~ t,v50!.

~3.60!

An explicit calculation of this limit leads to

Ds~ t,v50!5
aj c̊2

2G̊m2m2

~s! g2~ l !Re@F18 ~0!#

2G~ l !@12w3
2~ l !#~k l !4@11g2~ l !F1

~s!~u!#

1Ds~ t,v50!, ~3.61!

where we have defined

F18 ~0!5 lim
v→0

]F1„v~ l !,w̃~ l !…

]v
. ~3.62!

The static vertex functionG̊m2m2

(s) is proportional to a thermo

dynamic derivative~see Appendix A!, which tends to zero
proportional tota in the critical regime. The flow paramete
l is related to the reduced temperature by Eq.~3.57!, leading
to l;tn in the asymptotic region at zero frequency. Thus
asymptotic critical behavior of the Onsager coefficientG fol-
lows from Eqs.~3.39! and~3.40! by inserting the fixed point
values zf

! 52h and zG
(d)!52xl . This leads to an

asymptotic behaviorG(t);t2n(h1xl). All other parameters
in Eq. ~3.61! stay finite at the critical temperature. The tem
perature behavior of the sound diffusion coefficient in t
symptotic region is therefore

Ds~ t,v50!;t2zn1a, z542h2xl , ~3.63!

which is the same as in pure fluids. The asymptotic div
gence in Eq.~3.63! is completely contained in the first term
of Eq. ~3.61!. The second termDs(t,v50) involves only
subleading divergences. Inserting Eq.~3.63! into the experi-
mentally observed sound attenuation introduced in
~3.20!, we get

as~ t,v!;v2t2zn1a, ~3.64!

which is now the same behavior as that of the sound di
sion coefficient. In pure fluids the behavior of the sou
attenuation is as;v2t2zn2a/2. The difference in the
asymptotic behavior is caused by the different critical beh
ior of the sound velocity in pure fluids and mixtures.

IV. COMPARISON WITH EXPERIMENT

A. Shear viscosity at the plait and consolute point

From Eqs.~3.15! and ~3.21! we obtain for the complex
shear viscosity

h̄~ t,v!5r f̊ t t̃ . ~4.1!

Because the momentum densities do not renormalize,
dynamic vertex function in Eq.~4.1! can be written as

f̊ t t̃5aj~k l !2l t~ l !@11Et~ l ,v!#, ~4.2!
e

r-

.

-

-

he

where all contributions of the perturbation expansion are c
lected in the complex functionEt . The flow of the Onsager
coefficientl t is determined by the flow equation~D18!. The
solution of this equation is

l t~ l !5~k l !22l̊tZl t

21expS *1
l dx

x
zl tD . ~4.3!

The asymptotic behavior of Eq.~4.3! is obtained by inserting
the fixed point valuezl t

! 52xh leading tol t( l ); l 2xh in the

asymptotic region. At zero frequency the shear viscos
turns into the real quantity

h̄~ t,v50!5
1

RT
~k l !2l t~ l !@11Et~ l ,v50!#, ~4.4!

where aj51/RTr. The real function Et( l ,v50)
5Et„f t( l ),w3( l )… depends on the time scale ratio introduc
in Eq. ~3.37! and the mode coupling parameterf t , which is
defined as

f t
2~ l !5

g2~ l !

G~ l !l t~ l !
. ~4.5!

At zero frequency the flow parameter is simply connected
the reduced temperature by the relation~3.56!. Thus we im-
mediately obtain with Eqs.~4.3! and ~4.4! the asymptotic
behavior of the shear viscosity as

h̄~ t,v50!;t2nxh, ~4.6!

which is the same as in pure fluids. Differences between p
fluids and mixtures arise in the amplitude functionEt , which
is now also a function of the time scale ratiow3 ~see Table
X!. The Onsager coefficientl t( l ) may be replaced by the
mode coupling parameterf t and the Onsager coefficientG
using Eq.~4.5!. The coefficientg( l ) is simply given by

g~ l !5~k l !2~11e/2!Ad
1/2 RT

ANA

, ~4.7!

where we have used Eq.~D11! and the definition ofg̊ in the
text below Eq.~2.19!. Inserting in Eq.~4.5!, the Onsager
coefficient may be written as

l t~ l !5~k l !2~21e!Ad

~RT!2

NAG~ l ! f t
2~ l !

. ~4.8!

The expression for the shear viscosity does not contain
thermodynamic derivative. The temperature behavior is
termined by the flow of the dynamic parametersG~l!, f t( l ),
and w3( l ) and a simple l power. This makes the shear v
cosity a suitable quantity for a comparison with experimen
data to determine the initial valuesG( l 0), f t( l 0), andw3( l 0)
of the dynamic flow. With Eqs.~4.4! and ~4.8! and l
5j0j21(t) the shear viscosity reads

h~ t !5
AdRT

NA
je~ t !

11Et„f t~ t !,w3~ t !…

G~ t ! f t
2~ t !

. ~4.9!
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The temperature flow of the dynamic parametersG(t), f t(t),
andw3(t) is obtained from the flow equations in Append
D. Inserting the matching condition~3.56!, we obtain from
Eqs.~D16!, ~D21!, and~D22!

dG

dt
52j21~ t !j8~ t !G~ t !~zG

~d!1zf!, ~4.10!

dw3

dt
5

1

2
j21~ t !j8~ t !w3~ t !zG

~d! , ~4.11!

d ft

dt
5

1

2
j21~ t !j8~ t ! f t~ t !~e1zG

~d!1zl t
1zf!. ~4.12!

j85dj/dt is the derivative of the correlation length. Equ
tion ~4.9!, together with Eqs.~4.10!–~4.12!, constitutes an
exact expression for the shear viscosity in liquid mixtures
the plait point as well as at the consolute point. The am
tude functionEt and thez functions may be inserted in an
order of a loop expansion. Further, an explicit expression
the correlation length is necessary, which basically could
calculated also in a loop expansion as a function of the c
pling u within the f4 model. However, for a compariso
with experiments it is more useful to replace the theoret
correlation function by a function that includes experimen
information. An obvious simple expression for the corre
tion length is

j~ t !5jb1j0t2n, ~4.13!

with n50.63. Equation~4.13! describes a correlation lengt
that turns from the asymptotic behaviorj0t2n nearTc to a
background valuejb far away from the critical temperature
j0 has been determined experimentally in several liquid m
tures, while in contrast no experimental information abo
the background values is available.

Therefore, we restrict the expression for the correlat
length to the asymptotic formjb50 of Eq. ~4.13! for subse-
quent calculations~see Table I for specific values!. Inserting
the one-loop expression of the amplitude functionEt from
Table X in Appendix D and the correlation function~4.13!
into Eq. ~4.9! we obtain

h~ t !5
RTj0

4pNAtnG~ t ! f t
2~ t ! S 12

f t
2~ t !

36@12w3
2~ t !# D .

~4.14!

TABLE I. Experimental values ofj0 and the critical tempera
ture and density in several mixtures. The3He-4He parameters are
taken from @32#. The values for the aniline-cyclohexane mixtu
have been taken from@57# and @46#.

PP CP
3He-4He A-C

Value X50.8 X50.66 X50.45a Xc50.44

j0 ~cm! 2.531028 2.431028 2.331028 2.4531028

Tc ~K! 3.715 3.976 4.37 303.0
rc ~g/cm3! 0.04788 0.05228 0.0576 0.857

aAt this mole fraction the values are obtained by interpolating
corresponding parameters betweenX50.66 andX50 (4He).
t
i-

r
e

u-

l
l
-

-
t

n

This equation is written atd53 (e51), where we have
A351/4p. In this case the flow equations~4.10!–~4.12! re-
duce to

t
dG

dt
52

3n

4
G~ t ! f t

2~ t !, ~4.15!

t
dw3

dt
5

3n

8
w3~ t ! f t

2~ t !, ~4.16!

t
d f t

dt
52

n

2
f t~ t !S 12

3

4
f t

2~ t !2
f t

2~ t !

24@12w3
2~ t !# D .

~4.17!

The initial valuesG(t0), f t(t0), andw3(t0) at some tempera
ture distancet0 can now be obtained fitting experiment
shear viscosity data with Eq.~4.14! in a restricted tempera
ture region as shown in Fig. 1. Since the data fort,1024 are
affected by gravitation, these data were excluded from the
The resulting initial values are listed in Table II for3He-4He
mixtures at the plait point and aniline-cyclohexane mixtu
at the consolute point. In3He-4He mixtures no measuremen
of the shear viscosity atX50.45 have been performed. I
order to compare the results of our model with the expe
mentally measured sound velocity and attenuation at a m
fraction X50.45 @30#, we have generated a set ofh data at
this mole fraction from theX50.65 andX50 data by inter-
polation. The procedure is justified by the simply shift
curves at different mole fractions. The fit result atX50.45 is
also shown in Fig. 1 and the corresponding initial values
listed in Table II, where one can see that the values aX
50.45 continue the behavior atX50.8 andX50.65 as a
function of the mole fraction.

The flow of G, f t , and w3 in 3He-4He mixtures for the
three mole fractions is shown in Fig. 2. For comparison
have also plotted the flows for the pure fluids taken from@1#.

B. Critical sound propagation at plait points

The sound velocity and the sound attenuation are de
mined by Eqs.~3.51!, ~3.52!, and ~3.18!–~3.20!. Analogous
to pure fluids, the critical contributions due to the shear v
cosity, the thermal conductivity, the mass diffusion, and
thermal diffusion ratio are small compared to the leading p

e

TABLE II. Initial temperature and corresponding values of t
dynamic parameters found from a fit of the shear viscosity in s
eral mixtures.

PP CP
3He-4He A-C

Parameter X50.8 X50.65 X50.45a Xc50.44

t0 0.07 0.07 0.07 0.03
1018G(t0) ~cm4/s! 1.70 1.31 1.11 5.35
f t(t0) 0.430 0.486 0.516 1.075
w3(t0) 0.819 0.784 0.767 0.897

aAt this mole fraction the initial values have been found from inte
polated data.
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of the complex sound velocityCs . These contributions are a
included inDs and will be neglected in the following. In
addition, this term contains a background value appearin
the sound attenuation. Therefore, the sound attenuation g
in the equations below goes to zero in the background. Un
these circumstances an analysis of experimental data wi
performed with

cs
2~ t,v!5aj$a1c̊1

21 c̊2
2G̊m2m2

~s! Re@Vs„v~ l !,w̃~ l !…#%,

~4.18!

Ds~ t,v!52
1

v
aj$c̊2

2G̊m2m2

~s! Im@Vs„v~ l !,w̃~ l !…#%.

~4.19!

From Eq.~2.36! and the definition of the transformation m
trix in Table IX it follows that the parametersc̊1 and c̊2 at
the plait point are

c̊15
RT

r S ]P

]D D
s,Tc

, c̊25
RTr

xs,Tc

S ]c

]D D
s,Tc

. ~4.20!

FIG. 1. Shear viscosity for3He-4He mixtures at the plait poin
and aniline-cyclohexane at the consolute point. The experime
data~squares and triangles! are taken from@58# (3He-4He) and@59#
~aniline-cyclohexane!. The fit results are represented as lines. T
curve atX50.45 has been found by fitting the interpolated da
The 3He-4He data for t,1024 deviate from asymptotics due t
gravitational effects.
in
en
er
be

The thermodynamic expressions for the static vertex fu
tionsa15^m̊1m̊1&c

21 andG̊m2m2

(s) 5^m̊2m̊2&c
21 can be obtained

immediately from Eqs.~A3! and ~A4!.
In mixtures theTc value of the sound velocity is finite

because it is related to the inverse of the adiabatic compr
ibility at fixed concentration, which does not diverge in th
limit t→0. Within the model the zero-frequency sound v
locity may be written ascs

2(t,0)5csc
2 1cb

2(t), where theTc

value of the sound velocity is given bycsc
2 5aja1c̊1

2 and
cb

2(t)5aj c̊2
2G̊m2m2

(s) . At the plait point the critical value of the

sound velocity is small compared tocb
2(t) in the experimen-

tally accessible region. This can be seen from experiment
3He-4He mixtures@30#. Hence we will neglect it in the fol-
lowing. The sound velocity atv50 @Eq. ~3.59!# can be writ-
ten approximately as

cs
2~ t,0!5S ]P

]r D
s,c

>cb
2~ t !5aj c̊2

2G̊m2m2

~s! . ~4.21!

The static vertex functionG̊m2m2

(s) 5^m̊2m̊2&c
21 is related by

Eq. ~A4! to thermodynamic quantities, all of which have n
been measured so far. Equation~4.21! offers the possibility
to calculate the vertex function approximately from the ze
frequency sound velocity. Because the sound veloc
cs(t,v) at finite frequency runs intocs(t,0) in the back-
ground, the background behavior ofcs(t,v) can be used to

al

e
.

FIG. 2. Flow of the dynamical parameters found from the fit
the shear viscosity.
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find a numerical expression for the zero-frequency sound
locity and the adiabatic compressibility, respectively, wh
measurements ofcs(t,0) are not available. With Eq.~4.21!
the expressions~4.18! and ~4.19! may be simplified to

cs
2~ t,v!>S ]P

]r D
s,c

Re@Vs„v~ l !,w̃~ l !…#, ~4.22!
p

re

o

a

e
-
or

of

d

e-
n Ds~ t,v!>2

1

v S ]P

]r D
s,c

Im@Vs„v~ l !,w̃~ l !…#. ~4.23!

For a numeric calculation of the complex functionVs defined
in Eq. ~3.53!, it is necessary to determine the static coupli
g2(t). This can be done analogously to pure fluids@1# and
4He or 3He-4He mixtures at thel point @24,23# with
g2~ t !5
~22zf2!D0

1~ t !

Bf22@2zf22e1~22zf2!D0
1~ t !#F1

~s!~u!2uzudF1
~s!/du

. ~4.24!
he

ncy
n in

city
,
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The static functions appearing in Eq.~4.24! are defined
in Appendix D. The one-loop expressions are listed in A
pendix E. In addition, we have introduced thez function
zf25z r2zf in Eq. ~4.24!. D0

1(t) is the logarithmic deriva-
tive of them2 correlation function

D0
1~ t !52

d ln^m̊2m̊2&c

d ln t
5

d ln G̊m2m2

~s!

d ln t
. ~4.25!

With the approximation~4.21!, this expression reduces to

D0
1~ t !>2

d lnS ]r

]PD
s,c

d ln t
. ~4.26!

In 3He-4He mixtures the sound velocity has been measu
at mole fractions (3He) X50.45 andX50.8 at 1 MHz@30#.
For both mole fractions the background data~the tempera-
ture interval 0.005,t,0.1 atX50.45 and 0.003,t,0.1 at
X50.8) are used to determine experimental values
(]r/]P)s,c , which are then fitted with the expression

S ]r

]PD
s,c

5Art
2a

11Brt
D

11~ t/t r !
2a , ~4.27!

with a50.11 andD50.54. With the expression~4.27! we
obtain a representation of the compressibility orcs(t,0), re-
spectively, in the experimentally accessible region. It c
show a divergentlike behavior with the exponenta in a re-
stricted temperature region and then, at some temperaturt r ,
it crosses over to a finite value att50. Because the back
ground data of the sound velocity do not contain any inf
mation about the crossover temperaturet r , we will set t r
50 in the following, which is consistent with the neglect

TABLE III. Fit results for the adiabatic compressibility at fixe
concentration at several mole fractions.

Parameter X50.45 X50.66 X50.8

ArS g

cm3 TorrD 1.1031025 1.1731025 1.2231025

Br 20.653 20.617 20.592
-

d

f

n

-

the critical value of the sound velocity. The fit results for t
remaining parameters are listed in Table III.

The background data calculated from the zero-freque
sound velocity and the corresponding fit curves are show
Fig. 3. The curve atX50.65 is obtained from ‘‘data’’ that
have been calculated by interpolation of the sound velo
betweenX50.45 andX50.8. As stated also in Sec. IV A
the reason for this step is that the shear viscosity from wh
the initial values of the dynamic parameters are determi
has only been measured atX50.65 andX50.8. Analogously
to the shear viscosity, a concentration variation mai

FIG. 3. Fits of the adiabatic compressibility at fixed concent
tion. The squares and triangles are calculated from the meas
sound velocity in the background@30#. The fit results are repre
sented by the lines. TheX50.66 curve is obtained by fitting the
interpolated data. The static couplingsg2(t) at different mole frac-
tions have been calculated from Eq.~4.24!. ForD0(t) defined in Eq.
~4.25! the fits of the adiabatic compressibility have been used.
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causes a parallel shift of the sound velocity curves, while
structure of the curves nearly remains unchanged, as ca
seen in@30#. The static couplingg2(t) obtained with expres-
sions~4.24! and ~4.25! is plotted in Fig. 3 at different mole
fractions. The couplingu(t) is nearly a constant in the con
sidered temperature region. Therefore, we have inserted
fixed point valueu!/4!50.0405 in Eq.~4.24!.

In Eqs.~4.22! and ~4.23! the flow parameterl 5 l (t,v) is
determined by the matching condition~3.58! as a function of
the reduced temperature and frequency. At each fixed
quency Eq.~3.58! defines a flow parameterl ( t̄) correspond-
ing to an effective reduced temperaturet̄ if this value of l is
inserted into the static matching condition~3.56!. Thus, at
v50, t̄5t. A certain value of the flow parameter corr
sponds to different effective reduced temperatures depen
on the frequency. In other words, Eq.~3.58! connects the
temperature scale atv50, at which all functions are known
from experiments to a temperature scale at finite frequen
Equation~3.58! can be rewritten as

j28~ t !1S 2v

G~ t̄ !@12w3
2~ t̄ !#

D 2

5j28~ t̄ !, ~4.28!

where we have used the matching condition at zero
quency on the right-hand side. With the correlation len
~4.13! (jb50), the matching condition reads

t81S 2vj0
4

G~ t̄ !@12w3
2~ t̄ !#

D 2

5 t̄8. ~4.29!

Using the solutions of the flow equations~4.15!–~4.17! with
initial values found from the viscosity fits in Sec. IV A, w
may now calculate for each temperaturet at finite frequency
the corresponding reduced temperaturet̄ at v50 obtaining
the functiont̄(t,v) from Eq. ~4.29!. The corresponding ex
pressions~4.22! and ~4.23! turn into

cs
2~ t,v!>S ]P

]r D ~ t̄ !
s,c

Re$Vs@v~ t, t̄ !,w̃~ t̄ !#%, ~4.30!

Ds~ t,v!>2
1

v S ]P

]r D ~ t̄ !
s,c

Im$Vs@v~ t, t̄ !,w̃~ t̄ !#%. ~4.31!

From Eq.~3.53! we get

Vs@v~ t, t̄ !,w̃~ t̄ !#5
11g2~ t̄ !F1

~s!u~ t̄ !

11g2~ t̄ !F1@v~ t, t̄ !,w̃~ t̄ !#
. ~4.32!

Introducing the properties of the matching condition into t
parametersv and w̃ defined in Eq.~3.36!, we obtain

v~ t, t̄ !5
j22~ t !

j22~ t̄ !
, w̃~ t̄ !5

vj4~ t̄ !

2G~ t̄ !@12w3
2~ t̄ !#

. ~4.33!

The critical sound velocity in3He-4He mixtures is plotted
in Fig. 4 at the mole fractionsX50.8 andX50.45. The
zero-frequency sound velocity has been calculated from
compressibility fits shown in Fig. 3, which also determi
the static couplingg2. At finite frequencies no adjustabl
e
be

he

e-

ng

y.

-
h

e

parameters remain in the sound velocity and sound atte
tion. The results for the sound velocity at the frequencief
51 MHz andf 53 MHz are in good agreement with the co
responding experimental data as shown in Fig. 4.

The sound attenuation in3He-4He mixtures at mole frac-
tion X50.8, X50.65, andX50.45 is shown in Fig. 4. In-
stead ofa defined in Eq.~3.20! we have plotted the soun
attenuation in one wavelengthal5al52pacs /v, which
is in our theory given by

al~ t,v!52p
Im@Cs

2~ t,v!#

Re@Cs
2~ t,v!#

. ~4.34!

Inserting the approximate expressions~4.30! and ~4.31!, the
sound attenuation in one wavelength reads

al~ t,v!>2p
g2~ t̄ !Im$F1* @v~ t, t̄ !,w̃~ t̄ !#%

11g2~ t̄ !Re$F1@v~ t, t̄ !,w̃~ t̄ !#%
.

~4.35!

Experimentally it has been observed that the sound atte
tion in one wavelength is nearly independent from the m

FIG. 4. Sound velocitycs and sound attenuation in one wav
length al at several mole fractions and different frequencies. T
0-MHz curves forcs are determined from the experimental sou
velocity data in the background. The sound velocity curves a
MHz and 3 MHz have been calculated without any adjustable
rameter. The 1-MHz curves foral are normalized to 1. The sam
normalization factor is used at all other frequencies. Apart from t
one normalization factor, the sound attenuation curves do not
clude any adjustable parameter. The data have been collected
@30#.
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fraction @30#. This is also reproduced by the theory, as o
can see in Fig. 4 at several frequencies.

C. Critical heat and mass transport

With the same procedure that has been applied to soun
the previous sections, one can derive expressions for the
and mass transport coefficients. With the structures in
pendix C atv50, the thermal conductivity~3.30! turns into

kT~ t !

rT
5

1

D~ t ! S r

RTD 2S ]D

]c D
T,P

@ f̊
ff̃

~d!
m̊2L̊2#. ~4.36!

Equations~3.31!, ~3.32!, and ~4.36! are valid for the plait
point and the consolute point. The difference between
two critical points in these expressions lies in the expl
definition of the appearing model parameters. Analogou
to Sec. IV B, we have to introduce the renormalized qua
ties to obtain functions of the reduced temperature. The o
function in the above expressions that has a nontrivial
namic renormalization isf̊

ff̃

(d)
. The dynamic order paramete

vertex function reads@the flow parameterl (t) depends ont
via the matching condition~3.56!#

f̊
ff̃

~d!
5ZfexpS 2E

1

l dx

x
zfDG~ l !@11G~ l !#, ~4.37!

where the functionG( l ) collects all contributions due to th
perturbation expansion. Thus, with Eqs.~4.37! and~3.39! we
get

f̊
ff̃

~d!
5G~d!~ l !@11G~ l !#. ~4.38!

The time scale ratiow3 introduced in Eqs.~3.37! and~3.41!,
respectively, has been defined with the transformed Ons
coefficients that correspond to the densitiesmW 0 . In the above
expressions the Onsager coefficients of the untransfor
model appear. Analogously to Eq.~3.41!, we may introduce
a time scale ratiow38

2( l )5L̊2/G (d)( l )m̊. Inserting the trans-
formation ~2.29!, one can show that both time scale rati
are equal apart from irrelevant parameters such
G( l )/m̂( l ); l 2, which have to be neglected in the whole pe
turbation expansion. Thus we havew38( l )5w3( l )
1O„AG( l )/m̂( l )… and it is not necessary to make a distin
tion between the two parameters. The l dependence inG( l )
enters via the model parameters.G( l ) generally is a function
of w3( l ), f t( l ), and the static parametersu( l ) and g2( l )
when irrelevant parameters are neglected. Inserting
~4.38! and the time scale ratiow3 into Eq. ~4.36!, we obtain
at least for the thermal conductivity the expression

kT~ t !

rT
5

1

D~ t ! S r

RTD 2S ]D

]c D
T,P

m̊G~d!~ t !@12w3
2~ t !1G~ t !#.

~4.39!

The transport coefficients are considered at zero freque
thus the matching condition~3.56! determines the connectio
between the flow parameter and the reduced tempera
The fixed point value of the time ratiow3 is w3

!50, as can be
seen from the flow equation in Appendix D. As a cons
quence, the fixed point values of the remaining parame
e
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and the correspondingz functions, particularly the dynamic
exponentxl52zG

(d)!, are the same as in pure fluids. Equ
tion ~4.39! is valid at the plait point as well as at the cons
lute point. However, the thermal diffusion ratio and the ma
diffusion coefficient lead to different expressions for bo
critical points.

1. Plait point

Using the general structures given in Appendix C and
thermodynamic expressions for the static vertex functions
Appendix A, the mass diffusion coefficient~3.26! and the
thermal diffusion coefficient~3.27! at the plait point turn into

D~ t !5
r

RT S ]D

]c D
T,P

F m̊12S ]c

]s D
D,P

L̊1S ]c

]s D
D,P

2

f̊
ff̃

~d! G ,

~4.40!

kT~ t !

T
5

r

RT

1

D F L̊1S ]c

]s D
D,P

f̊
f̃f̃

~d! G2S ]c

]TD
D,P

. ~4.41!

Although all transport coefficients have been calcula
within the transformed model represented by Eq.~2.31!, in
the transport coefficients~4.36!–~4.41! corresponding to the
slow hydrodynamic modes, the appearing Onsager co
cients ~2.34! combine in such a way that they may be r
placed completely by the Onsager coefficients of the n
transformed model represented by Eqs.~2.4! and ~2.18!.
Thus we obtain expressions for the thermal conductivity,
thermal diffusion ratio, and the mass diffusion coefficie
which are equal to those obtained in the reduced modelH8
@3#, where the effects of the fast sound mode have b
neglected. This is different from the situation in4He @20# and
3He-4He mixtures@31# at thel transition, where the sound
degrees of freedom lead to small corrections to the s
hydrodynamic coefficients. Inserting Eq.~4.38! into Eqs.
~4.40! and ~4.41! we get the expressions

D~ t !5
r

RT S ]D

]c D
T,P

@m̊12aL̊1a2G~d!~ t !@11G~ t !##,

~4.42!

kT~ t !

T
5

r

RT

1

D~ t !
$L̊1aG~d!~ t !@11G~ t !#%2S ]c

]TD
D,P

52
r

RT

1

D~ t ! F L̊1
m̊

a G2S ]c

]TD
s,P

~4.43!

for the mass diffusion coefficient and the thermal diffusi
coefficient. Analogously to@3#, we have introduced the pa
rametera in Eqs.~4.42! and ~4.43!, which is defined by

a5S ]c

]s D
D,P

. ~4.44!

This thermodynamic derivative is only weakly varying wi
the temperature and can be considered as constant in
small critical temperature region. The second equality in
~4.43! has been obtained by an insertion of the explicit e
pression for the mass diffusion followed by a rearrangem
of the appearing terms. In the first expression forkT two
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strongly divergent quantities have to cancel each other
subtraction in order to obtain the correct asymptotic beh
ior. This shortcoming is not present in the second expres
for kT , which is more appropriate for numerical calculation
The asymptotic behavior of the slow transport coefficients

D5D ~c!tg2xln, kT5kT
~c!t2g1xln, kT5kT

~c! ,
~4.45!

as already shown in@3#. The connection between the coef
cient G (d)( l ) and the Onsager coefficientG( l ), which has
been determined from the shear viscosity in Sec. IV A,
been given in Eq.~3.39!. The Z factor and the exponentia
may be eliminated with Eq.~D7!. One gets

G~ l !5
G̊ff

~s!

~k l !2Ĝff
~s!

G~d!~ l !. ~4.46!

Inserting the thermodynamic expression of the unrenorm
ized order parameter vertex function in Table VIII and t
matching condition~3.56!, the parameterG (d) is related to
the Onsager coefficient by

G~d!~ t !5
RT

r S ]s

]TD
D,P

~j0
21tn!2G~ t !. ~4.47!

In Eq. ~4.47! we have replacedĜff
(s) by its one-loop expres

sion in Eq. ~E2!. In order to calculate the transport coef
cients ~4.39!, ~4.42!, and ~4.43! explicitly at the plait point
some additional static quantities are needed from exp
ment. In 3He-4He mixtures experimental information on th
concentration susceptibility (]X/]D)T,P @32#, the isothermal
compressibilityKT,X5(1/r)(]r/]P)T,X @33#, the isochoric
specific heatCn,X5T(]s/]T)X,n @34#, and (]P/]T)X,n @35#
is available. All thermodynamic derivatives in Eqs.~4.39!–
~4.47! have to be expressed by these quantities. From s
dard thermodynamic relation one may derive the relation

S ]s

]TD
D,P

5S ]s

]TD
c,P

1S ]c

]TD
D,P

2 S ]D

]c D
T,P

, ~4.48!

S ]c

]TD
D,P

5
1

2a S ]c

]D D
T,P

F11A124a2S ]s

]TD
c,P

S ]D

]c D
T,P

G ,

~4.49!

S ]c

]TD
s,P

5
1

2a S ]c

]D D
T,P

3F211A124a2S ]s

]TD
c,P

S ]D

]c D
T,P

G .

~4.50!

The isobaric specific heat at constant concentra
(]s/]T)c,P can be expressed by the isochoric specific h
with

S ]s

]TD
c,P

5S ]s

]TD
c,r

1
1

r2 S ]P

]T D
c,r

2 S ]r

]PD
T,c

. ~4.51!
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With the above relations all static quantities apart from
unknown constanta can be calculated from experiment
results. In order to obtain data representations we have
formed fits of several data. The concentration susceptib
has been fitted with the expression

S ]X

]D D
T,P

5Db1D0t2x, ~4.52!

with Db , D0 , andx variable parameters. For the isochor
specific heat we have taken the expression

Cn,X5Act
2a~11Bct

D!. ~4.53!

The exponentsa50.11 andD50.54 are fixed. An appropri-
ate fit form for the isothermal compressibility turned out
be

KT,X5
Kxt

2g8

11S t

tx
D 2g8

, ~4.54!

FIG. 5. Experimentally determined thermodynamic derivativ
and the corresponding fits performed with Eqs.~4.52!–~4.55!. The
data are taken from@32# for the concentration susceptibility, th
isochoric specific heat@33#, the isothermal compressibility@34#, and
for (]P/]T)n,X @35#.
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with a fixed effective exponentg851.19, which has been
used also in pure fluids@1#. At least (]P/]T)X,n has been
fitted with the same expression used in pure fluids, which

S ]P

]T D
X,n

5a01a1t1a2t21Bt12a, ~4.55!

with the same exponenta as in Eq.~4.53!. TheTc valuea0
has been fixed at each mole fraction, while the remain
parametersa1 , a2 , andB have been determined by the fi
The fit results for all quantities are listed in Table IV.

The static data and the corresponding fits are shown
Fig. 5. At this stage three constant parametersm̊, L̊, anda
remain unknown, while the initial valuesG(t0), f t(t0), and
w3(t0) have been determined from a shear viscosity
These three parameters may be found by a fit of the ther
conductivitykT and the thermal diffusion ratiokT in a small
temperature region 1023<t<1022 where experimental dat
are available@36,37#. The results of the calculation ar
shown in Fig. 6 as solid lines. The mass diffusion coeffici
D, which is also experimentally available at this mole fra
tion @38#, has been calculated without any adjustable para
eter and is shown in the same figure. The fit region is in
cated by a bar in thekT andkT plot. The obtained values fo
m̊, L̊, anda are listed in the first column of Table V.

In Fig. 6 one can see a deviation of the calculated so
lines and the experimental data ofkT andkT . This deviation
may be removed by a change of the fitting procedure. Inst
of calculating the flow from shear viscosity fits alone, it
also possible to perform a common fit ofh, kT , andkT that
determines all six parametersG(t0), f t(t0), w3(t0), m̊, L̊,
and a in one step. The result of this procedure is shown
dashed lines in Fig. 6. Now the background behavior ofkT
and kT is better than in the previous fitting procedure, b
deviations in the shear viscosity appear. Each improvem
in the thermal transport coefficients causes a deviation in
shear viscosity. This background deviations imply that o
or more coefficients include temperature-dependent reg
background contributions that are not contained in
model. The effect of such contributions and the system

TABLE IV. Fit results of the concentration susceptibility~4.52!,
the isochoric specific heat~4.53!, the isothermal compressibility
~4.54!, and (]P/]T)X,n @Eq. ~4.55!# in 3He-4He mixtures atX
50.8.

Db ~mole/J! 5.831023

D0 ~mole/J! 4.131025

x 1.22
Ac ~J/cm3 K! 0.115
Bc 0.429
Kx ~Torr21! 1.6631024

tx 2.1431022

a0 ~Torr/K! 959
a1 ~Torr/K! 21363.3
a2 ~Torr/K! 2391
B ~Torr/K! 1480.6
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correction procedure has recently been discussed in@13,39#,
where as an explicit example the shear viscosity in
butoxyethanol–water mixtures at the consolute point
been considered. In Fig. 7 we compare the flow obtain
from the shear viscosity fits atX50.8 from Fig. 2 ~solid
lines! with the flow obtained by fittingh, kT , andkT ~dashed
lines!. In the background the Onsager coefficientG obtained
from the second procedure is larger than the one from
shear viscosity fit causing the deviation in the shear visco
@dashed line in Fig. 6~a!#. The time scale ratiow3 is growing
with the improved background behavior ofkT andkT , which
means a decrease in 12w3

2. Together with the increasingG,
this implies that the effective Onsager coefficientG(1
2w3

2) entering the matching condition is only slightly vary
ing. The frequency-dependent kink in the sound velocity a
the sound attenuation is mainly determined by this effect
Onsager coefficient. As a consequence, the difference of
flows in Fig. 7 should have only a weak influence on t
sound velocity and the sound attenuation. This is verified
Fig. 8, where we have compared the sound velocities
sound attenuations following from the two different flows

2. Consolute point

The mass diffusion coefficient and the thermal diffusi
ratio at the consolute point are obtained from Eqs.~3.25! and
~3.29!:

D~ t !5
r

RT S ]D

]c D
T,P

f̊
ff̃

~d!
, ~4.56!

FIG. 6. Transport coefficients in3He-4He mixtures.kT and kT

have been fitted in the temperature region 1023,t,0.1.D has been
calculated without any adjustable parameters. The data have
taken from@36–38#.
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kT~ t !

T
5

r

RT

L̊

D~ t !
. ~4.57!

Inserting Eq.~4.38! into Eq. ~4.56!, we get the expression

D~ t !5
r

RT S ]D

]c D
T,P

G~d!~ l !@11G~ l !# ~4.58!

for the mass diffusion coefficient at the consolute point. T
asymptotic behavior of the transport coefficients at the c
solute point is the same as at the plait point in Sec. IV C
Analogously to the plait point, the coefficientG (d) is related
by Eq. ~4.46! to the Onsager coefficientG. However, the
static order parameter vertex function now corresponds
another thermodynamic derivative, as can be seen f
Table VIII. Therefore, Eq.~4.46! turns into

G~d!~ t !5
RT

r S ]c

]D D
T,P

~j0
21tn!2G~ t ! ~4.59!

at the consolute point. Inserting into Eq.~4.58! we obtain

D~ t !5~j0
21tn!2G~ t !@11G~ t !#. ~4.60!

FIG. 7. Comparison of the flow of the dynamical paramet
found from a fit of the shear viscosity~solid lines! with the flow
found from the fit of the shear viscosity, the thermal conductiv
and the thermal diffusion ratio~dashed lines!.
e
-
.

to
m

The mass diffusion coefficient is completely determined
the dynamic flow, which has been found for anilin
cyclohexane mixtures from the shear viscosity in Sec. IV
Therefore,D can be calculated from Eq.~4.60! without any
adjustable parameter and compared with the correspon
data in@40#. There the thermal diffusion ration has also be
measured. The thermal diffusion ratio is immediately det
mined by Eq.~4.57! with L̊ as an adjustable parameter.
Fig. 9 we have compared the results for the mass diffus
coefficient and the thermal diffusion coefficient with the e
perimental data taken from@40#. Choosing L̊53.75
31025 J cm5/g s K mole, the calculatedkT curve is in good
agreement with the data.

V. COMPARISON WITH THE
FERRELL-BHATTACHARJEE THEORY

AT THE CONSOLUTE POINT

Most of the critical sound experiments near the consol
point have been analyzed in terms of the theory of Fer
and Bhattacharjee~see Fig. 10!. They start in their phenom
enological theory from the thermodynamic expression for
adiabatic sound velocity and isolate the singular contribut
related to the specific heat at constant pressure and con
trationCp,c(t) @14#. By scaling arguments and observing th
Kramers-Kronig relations they generalize the static sou

s

,

FIG. 8. Sound velocitycs and sound attenuation in one wav
lengthal calculated from different flows. The full lines are those
Fig. 4 with the parameters found from a fit of the shear viscos
the dashed lines are from a fit of the shear viscosity, thermal c
ductivity, and thermal diffusion ratio. The data have been tak
from @30#.
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6264 PRE 58R. FOLK AND G. MOSER
velocity to the complex frequency-dependent sound veloc
which is, in our notation,Cs(t,v), by introducing a
frequency-dependent specific heatCp,c(t,v) @15,41#, which
is calculated within the decoupled mode theory@42#.

In our theory the transformation~2.29! eliminates one of
the static couplingsg i , which leads to the separation of no
singular and singular parts in the complex sound veloc
Physically, this means introducing variations along and p
pendicular to the phase transition lineTc(P). Analogously to

FIG. 9. Transport coefficients in aniline-cyclohexane mixtur
In kT the parameterL̊ has been adjusted.D has been calculated
without any adjustable parameters. The data have been taken
@40#.

FIG. 10. Comparison with the result of Ferrell and Bhattach
jee: FB, Ferrell and Bhattacharjee’s empirical function; FM, o
result in thee expansion; FM3, our result ind53; FL, our result for
pure fluids.
y,

.
r-

the plait point considered in Sec. IV, the sound velocity a
the sound attenuation are determined by the complex fu
tion Cs given in Eq.~3.51!. Contributions from heat and mas
transport included inDs are negligible. The only difference
from the plait point is that now the parametersc̊1 ,c̊2 and the
static vertex functionsa1 and G̊m2m2

correspond to other
thermodynamic derivatives. From Eq.~2.36! and Table IX
we get

c̊15
RT

r S ]P

]T D
c,Tc

, c̊25
RT2r

Cc,Tc

S ]s

]TD
c,Tc

. ~5.1!

The thermodynamic expressions of the static vertex fu
tionsa1 andG̊m2m2

are immediately obtained from Eqs.~A5!

and~A6!. As discussed in Sec. IV, the sound velocity at ze
frequency can be written ascs

2(t)5csc
2 1cb

2(t), with csc
2

5aja1c̊1
2 and cb

2(t)5aj c̊2
2G̊m2m2

. In contrast to the plait

point, the critical valuecsc is now large compared to th
fluctuation induced partcb(t). This suggests an expansion
cs(t)2csc into powers of the small ratiocb(t)/csc . We re-
write the sound velocity as

cs~ t !2csc5cscSA11
cb

2~ t !

csc
2 21D

.
cb

2~ t !

2csc
.

g2

2

csc
3

Tc

1

CP,c~ t !
, ~5.2!

with a coupling constantg, which has been introduced b
Ferrell and Bhattacharjee. Neglecting the temperatu
dependent term in the denominator ofcb

2(t), we obtain from
our expressions@with Eqs.~2.32!, ~2.33!, ~A5!, and~A6! and
aj51/RrTc#

g5rTcS ]s

]TD
c,Tc

S ]T

]PD
c,Tc

, ~5.3!

in agreement with Ferrell and Bhattacharjee.
The next step is to compare the frequency depende

Since no experimental results concerning the frequency

.

om

-
r

TABLE V. Comparison of the two fitting procedures in3He-4He
mixtures atX50.8. In the first procedure~flow from h! the initial
valuesG(t0), f t(t0), andw3(t0) have been determined by a fit o
the shear viscosity alone, while the constantsm̊, L̊, anda have been
found by a fit ofkT andkT . In the second procedure~flow from h,
kT , andkT), all six parameters have been found by a common fi
h, kT , andkT .

Parameter Flow fromh Flow from h, kT , andkT

G(t0) ~cm4/s! 1.70310218 5.54310218

f t(t0) 0.430 0.232

w3(t0) 0.819 0.913

m̊ ~cm5/s mole! 2.1931024 1.4931023

L̊ (cm9/2/sAmole) 5.4031023 23.5231022

a ~gK/J! 8.8931023 2.0531022
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pendence of the sound velocity are available, we restrict o
selves in this discussion to the frequency-dependent so
absorption. The most appropriate quantity is the sound
sorbtion in one wavelength since several theoretical fo
including the result of Ferrell and Bhattacharjee have b
compared recently@43,44#. For this purpose we have to re
strict our expressions on the one hand to the asymptotic c
cal region, regarding the solution of the matching conditi
On the other hand, we have to remain in the nonasympt
q.
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region concerning the dependence of the static specific
and the couplingg on the frequency-dependent effectiv
temperature. A typical temperature flow for this coupling
shown in Fig. 11. Contrary to the behavior near a plait po
~see Fig. 3!, g is a decreasing function near the consolu
point. This temperature dependence is related to the non
versal amplitude of the Wegner correction@13#. The quantity
studied is the sound absorption in one wavelength introdu
in Eq. ~4.34!. Inserting the complete expression~3.51! into
Eq. ~4.34! we obtain
al5p

cb
2~ t̄ !g2~ t̄ !Im@F1„v~ t̄ !,w̃~ t̄ !…#

11g2~ t̄ !F1
~s!
„u~ t̄ !…

u11g2~ t̄ !F1„v~ t̄ !,w̃~ t̄ !…u2

csc
2 1cb

2~ t̄ !$11g2~ t̄ !Re@F1„v~ t̄ !,w̃~ t̄ !…#%
11g2~ t̄ !F1

~s!
„u~ t̄ !…

u11g2~ t̄ !F1„v~ t̄ !,w̃~ t̄ !…u2

. ~5.4!
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The static couplingg2 has to be calculated according to E
~3.47!. The amplitude functionsF1(v,w̃) and F1

(s)(u) are
listed in Appendix E in one-loop order. The temperatu
scalet̄5 t̄(t) follows from the matching condition~3.58!. In
the experimental regiong2( t̄) is smaller than its fixed poin
value and we may neglect theg2 terms against 1~see Fig.
11!. Neglecting also the second term in the denominator,
expression simplifies to

al5p
cb

2~ t̄ !g2~ t̄ !

csc
2 Im@F1„v~ t̄ !,w̃~ t̄ !…#. ~5.5!

Dividing by the sound attenuation in one wavelength atTc
we obtain the final result, which has to be compared with
empirical function given by Ferrell and Bhattacharjee,

al

alc
5GFB~V!5F110.414S 2.1

V D 1/2G22

, ~5.6!

whereV5v/2Gasj0
24tzn and Gas has to be taken from the

asymptotic behavior of the order parameter Onsager co
cient. Our expression reads

al

alc

5GFM~V!5
cb

2~ t̄ !g2~ t̄ !

cb
2
„t̄~Tc!…g

2
„t̄~Tc!…

Im@F1„v~ t̄ !,w̃~ t̄ !…#

p/16
.

~5.7!

Note that the matching condition has to be solved in
asymptotic regime. This leads to the scaling solution@1#

t̄n5tnS~V!, ~5.8!

with S being the solution ofS851116V2S2(42z). As a fur-
ther approximation~used by Ferrell and Bhattacharjee! that
is valid in the experimental regime we takecb

2 as constant
andg2( t̄).const3t̄a. ThenGFM reads

GFM~V!5S t̄

t̄~Tc!
D a

Im@F1„v~ t̄ !,w̃~ t̄ !…#

p/16
. ~5.9!
e

e

fi-

e

It is obvious that for largeV both functions reach the valu
G51, whereas for smallV they reach the valueG50. How-
ever, the approach to zero is different:GFB;V, whereas
GFM;V12a/zn. This is a small effect mentioned but ne
glected by Ferrell and Bhattacharjee. If we do the same
may simply write

GFM~V!5
Im@F1„v~ t̄ !,w̃~ t̄ !…#

p/16
, ~5.10!

shown in Fig. 10 and compared with other calculations. I
also of interest to compareal /alc with the result valid for
pure fluids. There we havecsc50 and

al5p
g2~ t̄ !Im@F1„v~ t̄ !,w̃~ t̄ !…#

11g2~ t̄ !Re@F1„v~ t̄ !,w̃~ t̄ !…#
. ~5.11!

If we take for the static couplingg2 its fixed point value, we
find for the ratio

al

alc
5GFM~V!

110.35 Re@F1~v„t̄~Tc!…,w̃„t̄~Tc!…!#

1.06
.

~5.12!

Neglecting the factor ofGFM(V), we can conclude that un
der the conditions mentioned the ratio of sound absorptio
the mixtures and the pure fluid scale with the same unive
scaling function. Thus we have derived, on the basis of
stochastic models describing the respective critical dyna
ics, what has been observed within the phenomenolog
theory @45#. There an effective, nonasymptotic scaling fr
quency has been introduced, quite similar to Eq.~6.5! in @1#.

However, we want to remark that the asymptotic prop
ties of the sound attenuation in mixtures and pure fluids
different. For example, whereas for pure fluids atTc , al

goes to a constant forv→0 in mixtures, it goes to zero like
al;va/zn. Only in the experimentally observable region
the ‘‘universality’’ of the ratio considered above establish
by the validity of the approximation made. Universality
fluids and mixtures is based on the renormalization prop
ties, namely, the fact that all renormalizations necessary
be expressed by those of modelH. There are other nonuni
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versal properties; for a striking example see the enhancem
of the thermal conductivity near the consolute point, which
governed by the parameterw present only in the extende
modelH8 @13#. We would like to note that in a mixture ther
aretwo dynamic exponents of transient correction to scali
One corresponds to the mode coupling and has the s
value as in pure fluidsv f5e and the other one correspond
to the parameterw present only in mixtures and is related
the pure fluid exponentxl of the thermal conductivityvw
5xl/2;e/2.

VI. CONCLUSION

We have presented a nonasymptotic renormaliza
group theory for the critical behavior of the hydrodynam
modes including the sound mode. Nonuniversal parame
enter the theory. These are background values of the m
Onsager coefficients,G0 ~the renormalized coefficient for th
order parameter!, the unrenormalized valuesm̊ and L̊, the
renormalized ratio of Onsager coefficientsw3(t0), and the
mode coupling constantf (t0). The static quantities are take
directly from experiments and/or are calculated from m
sured quantities using thermodynamic relations. The
namic field theoretic functions are calculated within the o
loop approximation. Within this approximation th
asymptotic critical exponent for the shear viscosity is giv
by xh51/1950.053@2# and the asymptotic value of the Ka
wasaki amplitude byR51.056@12#. Whereas the Kawasak
amplitude agrees with the value adopted in mode coup
theory@5# and found in the asymptotic region@46#, the criti-
cal exponentxh seems to be too small. Theoretical calcu
tions beyond one-loop order lead to values between 0.04@47#
up to 0.068@48#, whereas experimental values in the regi
0.06760.003 @49# were found. One may treat the expone
xh as a parameter keeping the correct value of the asymp
Kawasaki amplitude@50# and improve the fit as well as th
predictions. However, this has to include gravitational effe
besides the background effects, at least near the gas-li
phase transition extending the calculation to noncritical v
ues of the density. This has been done for pure fluids in@50#
and qualitatively similar agreement with experiment could
reached as in mode coupling theory@5#. We expect this be
the case also for mixtures.

The situation concerning the transport coefficients
3He-4He mixtures is not completely satisfying; improv
ments of the fits of the thermal conductivity and of the th
mal diffusion ratio are at the expense of the agreement w
the shear viscosity. We attribute this to uncertainties in
static quantities used in the background. So far consiste
of the data for the transport coefficients can be checked o
within 10%. We would like to mention that only for3He-4He
mixtures are we in the favorable situation of having expe
mental values available for all three transport coefficie
and the sound mode. For other mixtures near the gas-liq
critical point only the thermal conductivity could be com
pared with mode coupling calculations~for CO2-ethane mix-
tures see@5#; for methane-ethane mixtures see@51#!.

Concerning mixtures near the consolute point it would
worthwhile to look for examples other than 2
butoxyethanol–water mixtures, where a measurable
hancement of the thermal conductivity is observed. Furth
nt
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more, it would be of interest to extend the verification of t
exact relation between the mass diffusionD and the thermal
diffusion ratio kT , D/kT5const, further out to the back
ground.

Another point of interest is the temperature dependenc
the correlation length, which enters the matching conditi
The crossover of the correlation length to its backgrou
value is of importance and favorable conditions in light sc
tering experiments may be found in binary polymeric m
tures @52,53#. The consequences of a possible crossove
‘‘mean field theory’’ on the behavior of the dynamical qua
tities @54# should be worked out. The small critical expone
found in polymer solutions,xh50.044,@55# is so far unex-
plained and connected with the question of another univ
sality class for these systems.

Regarding the sound propagation near the consolute
the gas-liquid critical point the theory can be extended
noncritical concentrations and densities, respectively. For
first case data are available for aniline-cyclohexane mixtu
@44#.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR STATIC
QUANTITIES

In this appendix we give some connections between
quantities defined in the theoretical model and thermo
namics. Clearly, these connections depend on the crit
point ~plait or consolute point! one considers. The coeffi
cients of the matrixAJ in the static functional~2.4! represent
the second-order expansion coefficients in an expansio
the internal energy in powers of the extensive densities@3#.
Therefore, they are determined by second-order derivat
of the internal energy in the thermodynamic backgrou
which are equal to first-order derivatives of the intens
fields. The coefficients have been summarized in Table
for both critical points.

The superscript~0! indicates background values, whic
are considered as constants in the critical region. The c

ficients of the matrixAJ and the couplingsgW̊ q are related to
thermodynamics by Eq.~2.10!. Analogously to thel line in
3He-4He mixtures@22,23#, k1 , k2 , and the ratio of the twog
couplings are related to derivatives along the critical lin
which are smooth functions of the temperature and can th
fore be considered as constants in the critical region. A
consequence, both couplings must have the same cri
temperature behavior in order to obtain a constant ratio.
corresponding thermodynamic expressions are listed
Table VII.

The thermodynamic expressions for the correlation fu
tions are determined from the first-order response of the lo
density function to small variations of the intensive extern
fields @3#. They have been summarized in Table VIII.

The transformation matrix introduced in Eq.~2.29! may
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be expressed by thermodynamic derivatives along the cri
line. Inserting the thermodynamic expressions from Ta
VII into the transformation matrix~2.30! the matrix elements
are determined by finite critical line derivatives. The res
has been listed in Table IX, where a concentration susce
bility at Tc

xs,Tc
5S ]c

]D D
s,Tc

1
1

r2 S ]P

]D D
s,Tc

S ]r

]D D
s,Tc

~A1!

and a parameterCc,Tc
representing some kind of specifi

heat atTc

Cc,Tc
5TF S ]s

]TD
c,Tc

1
1

r2 S ]P

]T D
c,Tc

S ]r

]TD
c,Tc

G ~A2!

have been introduced. From the background paramete
Table VI, the correlation functions in Table VIII, and th
transformation matrix in Table IX thermodynamic expre
sions of the transformed correlation functions~2.32! and
~2.33! can be calculated, which are at the plait point

^m̊1m̊1&c5
RT

r
xs,Tc

, ~A3!

^m̊2m̊2&c5RTr3S ]D

]PD
s,Tc

2 F S ]c

]D D
s,P

2S ]c

]D D
s,Tc

2

xs,Tc

21 G
~A4!

and at the consolute point

TABLE VI. Thermodynamic identification of the backgroun
parametersai j at the plait point and at the consolute point.

Parameter PP CP

a11 r

RTS]D

]cD
s,r

~0! r

RTS]T

]sD
c,r

~0!

a22 1

RTr S]P

]r D
s,c

~0! 1

RTr S]P

]r D
s,c

~0!

a12 r

RTS]D

]r D
s,c

~0! r

RTS]T

]rD
s,c

~0!

1

RTr S]P

]cD
s,r

~0! 1

RTr
S]P

]sD
c,r

~0!

TABLE VII. Thermodynamic equivalents of the constantsk1 ,k2

introduced in Eq.~2.10! and the ratiog̊1 /g̊2 at the plait point and at
the consolute point.

Parameter PP CP

k1 r

RTS]D

]cD
s,Tc

r

RTS]T

]sD
c,Tc

k2 1

rRTS]P

]r D
s,Tc

1

rRTS]P

]r D
c,Tc

g̊1

g̊2
2S]r

]cD
s,Tc

2S]r

]sD
c,Tc
al
e

t
ti-

in

-

^m̊1m̊1&c5
R

r
Cc,Tc

, ~A5!

^m̊2m̊2&c5RTr3S ]T

]PD
c,Tc

2 F S ]s

]TD
c,P

2S ]s

]TD
c,Tc

2

TCc,Tc

21 G .

~A6!

APPENDIX B: DYNAMIC FUNCTIONAL AND VERTEX
FUNCTIONS

The calculation of dynamic correlation functions or d
namic vertex functions correspondingly in a perturbation
ries requires a generating dynamic functional. The basic w
to obtain such a functional from a set of dynamic equatio
which include stochastic forces, has been shown in@27# for
the dynamics of ferromagnets. In this treatment the esse
presumptions were that first all equations contain fluctuat
forces and second these forces are stochastically inde
dent, which means that the corresponding matrix of Onsa
coefficients is not singular. However, the hydrodynam
equations include the continuity equation for the mass d
sity, which is an exact relation expressing the conserva
of mass and therefore do not contain any fluctuating for
Nevertheless, it is possible to extend the treatment to a m
set of dynamic equations consisting of stochastic and e

TABLE VIII. Correspondence between the correlations and
thermodynamic derivatives at the two critical points.

Cumulant PP CP

^f0f0&c RT

r S]s

]TD
D,P

RT

r S ]c

]DD
T,P

^q̊1q̊1&c RT

r S ]c

]DD
s,P

RT

r S]s

]TD
c,P

^q̊2q̊2&c
RTrS]r

]PD
s,D

RTrS]r

]PD
c,T

^q̊1q̊2&c RT

r S]r

]DD
s,P

RT

r S]r

]TD
c,P

RTrS ]c

]PD
s,D

RTrS]s

]PD
c,T

TABLE IX. Thermodynamic expressions of the transformati
matrix ~2.29!.

Coefficient PP CP

M11 1 1
M22

xs,Tc

21 S ]c

]DD
s,Tc

TCc,Tc

21 S]s

]TD
c,Tc

M12 1

r2 S]P

]DD
s,Tc

1

r2 S]P

]TD
c,Tc

M21
2xs,Tc

21 S]r

]DD
s,Tc

2TCc,Tc

21 S]r

]TD
c,Tc
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equations. For the hydrodynamic equations of pure fluids
has been shown in explicitly@1#. Let us assume that we hav
N densitiesa i , i 51,...,N, with the dynamic equation

] taW 5VW 1QW ~B1!

containing stochastically independent fluctuating forcesQ i
~in liquid mixtures this would bes, c, j l , and j l) and M
densitiesai , i 51, . . . ,N, fulfilling the exact relation

] taW 5WW ~B2!

~in liquid mixtures this would ber!. The fluctuating forces
fulfill the Einstein relation

^QW ~x,t ! ^ QW ~x8,t8!&522LI8¹2d~x2x8!d~ t2t8!,
~B3!

whereLI8 is a N3N nonsingular matrix. The coefficients o
this matrix result from the corresponding hydrodynam
equations.VW andWW generally are functions of the densitie
a i and ai . The exact relations~B2! may be considered a
secondary conditions on the generating functional, wh
means that the stochastic forces fluctuate in such a way
Eq. ~B2! is always fulfilled. Thus the generating function
can be written as

Zd5E )
i 51

N

D~Q i !)
j 51

M

D~F j !d~F j !

3expF2
1

4 E dt dx QW TLI821QW G ,
~B4!

with F j5] taj2Wj . D refers to a suitable integration me
sure. Inserting Eq.~B1! and changing the integration var
ables fromQ i to a i leads to

Zd5E )
i 51

N

D~a i !)
j 51

M

D~aj !d~] taj2Wj !

3expF2
1

4 E dtE dxS @] taW 2VW #T

3LI821@] taW 2VW #12(
i

N
dVi

da i
12(

j

M
dWj

daj
D G .

~B5!

FIG. 11. Typical static couplingg2 for a mixture at the conso
lute point.
is

h
at

Thed function may be expressed by an exponential funct

d~] taj2Wj !5E D~ i ã j !expF2E dxE dt ãj~] taj2Wj !G .
~B6!

Performing a Gaussian transformation where also auxili
fields ã i are introduced, Eq.~B5! turns into

Zd5E E )
i 51

N

D~a i ,i ã i !)
j 51

M

D~aj ,i ã j !e
2J, ~B7!

with

J5E dtE dxS 2ãWTLI8ãW1ãWT~] taW 2VW !

1aW̃ T~] taW 2WW !1
1

2 (
i

N
dVi

da i
1

1

2 (
j 51

M
dWj

daj
D . ~B8!

Especially in liquid mixtures, the above dynamic function
corresponds to dynamic equations fors, c, r, j l8 , and jt8 .
Introducing the order parameter~2.1! or ~2.2!, respectively,
and the secondary densities~2.3!, we obtain the dynamic
equations~2.12!–~2.15! containing fluctuating forces. How
ever, these are not independent, which is expressed by
relations~2.20! between the Onsager coefficients leading
the singular matrix@L i j # ~singular in the sense that no in
verse matrix exists! defined in Eq.~2.17!. The order param-
eter and the secondary densities may also be introduce
the dynamic functional~B8!. This leads to the dynamic func
tional

J5E dtE dxS 2@b̃ i #
T@L i j #@b̃ j #

1@b̃ i #
T~] t@b j #2@Vj # !1

1

2 (
i

dVi

db i
D , ~B9!

where @b i # is defined by@b i #
T5(f0 ,q̊1 ,q̊2 ,j l ,jt) (@b̃ i # is

defined analogously with the corresponding auxiliary den
ties! and @L i j # is the coefficient matrix~2.17!. Further, we
have introduced@Vi #

T5(VW T,WW T). The structure of the func-
tional ~B9! is same as for the case where only dynamic eq
tions with stochastic independent fluctuating forces are c
sidered. The fact that now exact relations are included
considered in the properties of@L i j #, which is now a singu-
lar ~not invertable! matrix. An explicit expression for Eq
~B9! is obtained inserting the dynamic equations~2.12!–
~2.15!. The Fourier transformed Gaussian part can be writ
as
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J~0!5
1

2 E
k,v

$@b i #
T~k,v!,@b̃ i #

T~k,v!%

3G̊~0!~k,v!S @b j #~2k,2v!

@b̃ j #~2k,2v! D . ~B10!

The integration is defined as *k,v5*@ddk/
(2p)d#*(dv/2p). The elements of the matrixG̊(0)(k,v) are
the dynamic vertex functions in lowest-order perturbati
theory. They are given explicitly by

G̊~0!~k,v!5S @0# 2 iv@1#1@ L̊ab̃#~k!

iv@1#1@ L̊ ãb#~k! 22@lãb̃#~k!
D ,

~B11!

where @1# denotes the unit matrix. Further, we hav
@ L̊ ãb#(k)5@ L̊ab̃#†(k), where the dagger superscript denot
the adjoint matrix. The submatrices are given by
iven by

e

@ L̊ab̃#~k!51
G̊k2~ t̊1k2! L̊k2~ t̊1k2! L̊fk2~ t̊1k2! 2 ikg̊l h̊2 0

~a11L̊1a12L̊f!k2 ~a11m̊1a12L̊12!k
2 ~a11L̊121a12l̊!k2 ika12c̊ 0

~a12L̊1a22L̊f!k2 ~a12m̊1a22L̊12!k
2 ~a12L̊121a22l̊!k2 ika22c̊ 0

0 0 ikaj c̊ aj l̊lk
2 0

0 0 0 0 aj l̊tk
2

2 , ~B12!

@lãb̃#~k!5S G̊k2 L̊k2 L̊fk2 0 0

L̊k2 m̊k2 L̊12k
2 0 0

L̊fk2 L̊12k
2 l̊k2 0 0

0 0 0 l̊lk
2 0

0 0 0 0 l̊tk
2

D . ~B13!

The interaction terms in the Hamiltonian~2.4! and the mode coupling terms in the dynamic equation modify the matrix~B11!
and may be calculated in a perturbation expansion. Generally, the matrix of the dynamic two-point vertex function is g

G~k,v!5G~0!~k,v!2S~k,v!, ~B14!

whereS(k,v) contains 1-irreducible diagrams with two external legs. The matrixG̊(k,v) of the vertex functions has th
structure

G̊~k,v!5S @0# @G̊a,b̃#~k,v!

@G̊ã,b#~k,v! @G̊ã,b̃#~k,v!
D , ~B15!

with the submatrix
.
Eq.
n-
re
efi-

sid-

en-
The submatrices@G̊ã,b# and @G̊ã,b̃# are defined analogously
The propagators of the model are determined inverting
~B11!. Within the model the hydrodynamic structure is co
tained in the dynamic two-point vertex functions, which a
calculated in perturbation expansion. Some details and d
nitions are summarized in Appendix B. Because the con
ered structures are invariant under the transformation~2.29!,
the following expressions are generally formulated indep
dently of which secondary densities (qW 0 or mW 0) are used.
This is indicated by indicesa i , for which one may insertqi
@G̊ab̃#5S G̊ff̃ G̊fq̃1
G̊fq̃2 G̊f l̃ 0

G̊q1f̃ G̊q1q̃1
G̊q1q̃2

G̊q1 l̃ 0

G̊q2f̃ G̊q2q̃1
G̊q2q̃2

G̊q2 l̃ 0

G̊l f̃ G̊l q̃1
G̊l q̃2 G̊q l̃ 0

0 0 0 0 G̊t t̃

D .

~B16!
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or mi . The dynamic two-point vertex functions have the structure

@G̊ab̃#5S 2 iv@1I#1k2@FI̊ aã# k@G̊a# @0#

k@G̊ã#T 2 iv1k2 f̊ l l̃ 0

@0#T 0 2 iv1k2 f̊ t t̃

D , ~B17!
as
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with three-dimensional submatrices and vectors defined

@FI̊ aã#5S f̊ ff̃ FW̊ ã
T

FW̊ a FJ̊aã

D , @G̊a#5S g̊f l̃

g̊a1 l̃

g̊a2 l̃

D ,

@G̊ã#5S g̊l f̃

g̊l ã1

g̊l ã2

D . ~B18!

The matrices and vectors contained in@FI̊ aã# are defined in
the two-dimensional secondary density space by

FJ̊aã5S f̊ a1ã1
f̊ a1ã2

f̊ a2ã1
f̊ a2ã2

D , FW̊ a5S f̊ a1f̃

f̊ a2f̃
D , FW̊ ã5S f̊ fã1

f̊ fã2

D .

~B19!

@1I# in Eq. ~B17! is the three-dimensional unit matrix and@0#
is a three-dimensional null vector. The functionsf̊ a i ã j

and

g̊a i l̃
or g̊l ã i

denote thek2 and k contributions to the vertex

functions at wave vectork50,

f̊ a i ã j
5

]

]k2 G̊a i ã j
uk50 , g̊a i l̃

5
]

]k
G̊a i l̃

uk50 ,

g̊l ã i
5

]

]k
G̊l ã i

uk50 . ~B20!

Generally, these functions depend on the frequency, the
perature, the Onsager coefficients, and the static and dyn
couplings. They may be calculated in perturbation expans
by summing one-particle irreducible graphical contributio
with two corresponding external legs. Analogously to pu
fluids @1#, the functions in Eq.~B18! separate into purely

dynamic functions@FI˚ aã
(d)#, @G̊a

(d)#, and @G̊ã
(d)#, in which all

contributions due to perturbation expansion are proportio
to the mode coupling parameters and frequency-depen

functions @GI̊ aa# that reduce to the static two-point verte

functions @GI̊ aa
(s) #5@GI̊ aa# (v50) in the limit of zero fre-

quency. Thus Eq.~B18! can be written as
m-
ic
n

s
e

al
nt

@FI̊ aã#5@GI̊ aa#@FI̊ aã
~d!#, @G̊a#5@GI̊ aa#@G̊a

~d!#,

@G̊ã#5aj@G̊ã
~d!# ~B21!

where@FI̊ aã
(d)# has the same structure as in Eq.~B18! with a

superscript~d! at all functions and

@GI̊ aa#5S G̊ff 0W T

0W GJ̊aa

D , GJ̊aa5S G̊a1a1
G̊a1a2

G̊a1a2
G̊a2a2

D .

~B22!

The secondary densitiesmW 0 are decoupled; therefore, i
these variables the cross vertex functionG̊m1m2

50 and the
matrix ~B22! is of diagonal structure.

APPENDIX C: EXPLICIT EXPRESSIONS FOR C̊˜`

Due to the invariance of the determinant~3.10! under
transformation~2.29!, the explicit appearance of dynam
vertex functions in Eqs.~3.11!–~3.30! is the same in vari-
ablesqW 0 as well as inmW 0 . In the limit c̊→` this changes
because of the different behavior of the vectors@G̊a# and
@G̊ã#. The functionsg̊f l̃ and g̊l f̃ do not contain a factorc̊
and therefore can be neglected. Independently of the sec
ary densities, both functionsg̊a2 l̃ andg̊l ã2

are proportional to

c̊. Differences in the two sets of secondary densities aris
the vertex functionsg̊a1 l̃ and g̊l ã1

. For the secondary dens

ties qW 0 the vertex functions behave likeg̊q1 l̃ ;O( c̊) and

g̊lq̃1
;O(1). Thus the vectors in Eq.~B18! can be written as

lim
c̊→`

@G̊q#5S 0
g̊q1 l̃

g̊q2 l̃

D , lim
c̊→`

@G̊q̃#5S 0
0

g̊lq̃2

D . ~C1!

For the secondary densitiesmW 0 one hasg̊m1 l̃ ;O( c̊) and

g̊lm̃1
;O( c̊). Thus the vectors@G̊ã# and @G̊a# in Eq. ~B18!

reduce to

lim
c̊→`

@G̊m#5S 0
g̊m1 l̃

g̊m2 l̃

D , lim
c̊→`

@G̊m̃#5S 0
g̊lm̃1

g̊lm̃2

D , ~C2!

when only c̊→` contributions are considered. The expre
sions~3.11!, ~3.12!, ~3.16!, and~3.28! reduce to
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lim
c̊→`

Cs
252g̊q2 l̃ g̊l q̃2

52~ g̊m1 l̃ g̊lm̃1
1g̊m2 l̃ g̊lm̃2

!, ~C3!

lim
c̊→`

Ds5 f̊ l l̃ 1 f̊ q2q̃2
1 f̊ q2q̃1

g̊q1 l̃

g̊q2 l̃
5 f̊ l l̃ 1

g̊m1 l̃ g̊lm̃1
f̊ m1m̃1

1g̊m2 l̃ g̊lm̃2
f̊ m2m̃2

1g̊m1 l̃ g̊lm̃2
f̊ m2m̃1

1g̊m2 l̃ g̊lm̃1
f̊ m1m̃2

g̊m1 l̃ g̊lm̃1
1g̊m2 l̃ g̊lm̃2

, ~C4!

lim
c̊→`

F̊aã5 f̊ q1q̃1
2 f̊ q2q̃1

g̊q1 l̃

g̊q2 l̃
5

g̊m1 l̃ g̊lm̃1
f̊ m2m̃2

1g̊m2 l̃ g̊lm̃2
f̊ m1m̃1

2g̊m1 l̃ g̊lm̃2
f̊ m2m̃1

2g̊m2 l̃ g̊lm̃1
f̊ m1m̃2

g̊m1 l̃ g̊lm̃1
1g̊m2 l̃ g̊lm̃2

, ~C5!

lim
c̊→`

Waã5 f̊ fq̃1S f̊ q1f̃2 f̊ q2f̃

g̊q1 l̃

g̊q2 l̃
D 5

g̊m1 l̃ g̊lm̃1
f̊ fm̃2

f̊ m2f̃1g̊m2 l̃ g̊lm̃2
f̊ fm̃1

f̊ m1f̃2g̊m1 l̃ g̊lm̃2
f̊ fm̃1

f̊ m2f̃2g̊m2 l̃ g̊lm̃1
f̊ fm̃2

f̊ m1f̃

g̊m1 l̃ g̊lm̃1
1g̊m2 l̃ g̊lm̃2

.

~C6!
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All functions in Eqs.~C3! and ~3.28! are calculated in per
turbation expansion, which simplifies in the limitc̊→`.
From the structure of the perturbational contributions t
general statements, valid in all orders of the perturbat
expansion, can be made.

~i! No contributions to the purely dynamic parts@G̊ã
(d)#

and @G̊a
(d)# introduced in Eq.~B21! arise from the perturba

tion expansion. Thus one simply has

@G̊q
~d!#5@G̊q̃

~d!#5S 0
0
i c̊
D , @G̊m

~d!#5@G̊m̃
~d!#5S 0

i c̊1

i c̊2

D .

~C7!

The perturbation expansion contributes only to the ver

functions @GI̊ aa#, which may be considered as frequenc
dependent extensions of the static vertex functions. The
sulting matrices are

@GI̊ qq#5S G̊ff~v! 0 0

0 G̊q1q1
~v! G̊q1q2

~v!

0 G̊q1q2
~v! G̊q2q2

~v!
D , ~C8!

@GI̊ mm#5S G̊ff~v! 0 0

0 a1 0

0 0 G̊m2m2
~v!

D . ~C9!

~ii ! Also in the matrix@FI̊ aã
(d)# all functions do not get any

contributions from the mode couplings, except the order
rameter functionf̊

ff̃

(d)
. Therefore, one may write

@FI̊ qq̃
~d!#5S f̊

ff̃

~d!
~v! L̊ L̊f

L̊ m̊ L̊12

L̊ L̊12 l̊

D ,
n

x

-
e-

-

@FI̊ mm̃
~d! #5S f̊

ff̃

~d!
~v! L̊̂ L̊̂f

L̊̂ m̊̂ L̊̂12

L̊̂f L̊̂12 l̊̂

D . ~C10!

APPENDIX D: RENORMALIZATION OF THE STATIC
AND DYNAMIC PARAMETERS

One advantage of the introduction of the transformed d
sitiesmW 0 in Eq. ~2.29! is that the whole renormalization pro
cedure concerning the parameters appearing also in mixt
is equal to the procedure in pure fluids, which have be
considered extensively in@1#. Therefore, we give here only
short summary of the basic definitions and relations. T
renormalization will be performed within the field theoret
renormalization group theory. With the minimal subtracti
scheme@56# dimensional singularities at space dimensiond
54 in the vertex functions will be absorbed intoZ factors.

Within statics the momentum density and the densitym̊1
appearing in Eq.~2.31! do not need renormalization. Th
remaining densitiesf0 and m̊2 in Eq. ~2.31! and the corre-
sponding model parameters renormalize analogously tof0
andq0 in pure fluids@1#. The order parameter and the seco
secondary field are renormalized by

f05Zf
1/2f, m̊25Zm2

1/2m2 , ~D1!

whereZm2
is determined by the singularities of thef2-f2

correlation function and can be written as

Zm2

21511g2A~u!. ~D2!

A(u) contains the singularities of the specific heat calcula
within the f4 model and is obtained by an additive reno
malization of thef2-f2 correlation function.u is the renor-
malized fourth-order coupling of thef4 model ~2.6! in
which renormalized parameters will be introduced by

r̊ 2 r̊ c5Zf
21Zrr , ů5keZf

22ZuuAd
21. ~D3!
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k is the reference wave number ande5d24. The factor
Ad5G(32d/2)/2d22pd/2(d22) has been chosen for conv
nience to obtain a minimal number of perturbation contrib
tions in ane expansion of the specific heat@24#. The e sin-
gularities connected with the remaining parameterg̊m in Eq.
~2.31! can also be absorbed in renormalization factors
fined in thef4 model by

g̊m5ke/2Zf
21Zm2

1/2ZrgmAd
21/2. ~D4!

From theZ factors we introduce thez functions

z i5S k
] ln Zi

21

]k D
0

, i 5f,q,r ,u. ~D5!

The index 0 in Eq.~D5! indicates that the derivative is take
at fixed unrenormalized parameters. The fixed point val
z i* of thez functions at the Heisenberg fixed point are rela
to the critical exponents by

zf* 52h, zm2
* 5

a

n
, z r* 2zf* 522

1

n
. ~D6!

The static vertex functions can be expressed by renormal
parameters with

G̊ff
~s! ~j22,ů!5~k l !2Zf

21expS E
1

l dx

x
zfD Ĝff

~s!
„u~ l !…,

~D7!

G̊m2m2

~s! ~j22,g̊2,ů!5Zm2

21expS E
1

l dx

x
zm2D Ĝm2m2

~s!
„g2~ l !,u~ l !….

~D8!

The couplingg2 has been defined in Eq.~3.47!. The ampli-
tude functionĜff

(s) corresponds to the inverse order parame
correlation of thef4 model. The secondary density amp
tude function can be written as

Ĝm2m2

~s!
„g2~ l !,u~ l !…5

a2

11g2~ l !F1
~s!
„u~ l !…

, ~D9!

whereF1
(s)
„u( l )… is the amplitude of thêf2f2&c correlation

function also calculated within thef4 model @24#.
In dynamics all hydrodynamic densities are conserv

Therefore, the conjugated densitiesf̃0 andm̃
˚

2 introduced in
the dynamic functional~B7! do not require an independen
dynamic renormalization. Thus we have

f̃05Zf
21/2f̃, m̃

˚
25Zm2

21/2m̃2 . ~D10!

As a consequence of the Galilean invariance of the equat
of motion, the mode couplings do not need independenZ
factors. The following renormalized couplings will be intro
duced:

g̊5k11e/2gAd
21/2, gW̊ l5k21e/2gW lAd

21/2. ~D11!

The Onsager coefficients renormalize as
-

-

s
d

ed

r

.

ns

G̊5ZfZG
~d!G, L̂

˚
f5kZf

1/2Zm2

1/2L̂f , l̊̂5k2Zm2
l̂,

~D12!

l̊l5k2Zl l
l l , l̊t5k2Zl t

l t . ~D13!

In mixtures the additional Onsager coefficients

m̊̂5k2m̂, L̂
˚

5k2Zf
1/2L̂, L̊̂125k2Zm2

1/2L̂12 ~D14!

appear. From the above relations one can see that onlyG, l l ,
andl t have independent dynamicZ factors, while the renor-
malization of the remaining coefficients is completely det
mined by statics.ZG

(d) , Zl l
, andZl t

in Eqs.~D12! and~D13!

do not contain statice poles. The couplingsc̊1 andc̊2 renor-
malize as

c̊15k3c1 , c̊25k3Zm2

1/2c2 . ~D15!

We definez functions fori 5G,L̂f ,l̂,L̂,m̂,L̂12,l l ,l t analo-
gously to Eq.~D5!. The critical temperature dependence
the Onsager coefficients is determined by the flow equati

l
dG

dl
5G~zG

~d!1zf!, l
dl̂

dl
5l̂~221zm2

!, ~D16!

l
dL̂f

dl
5L̂fS 211

1

2
zf1

1

2
zm2D , ~D17!

l
dl l

dl
5l l~221zl l

!, l
dl t

dl
5l t~221zl t

!. ~D18!

The additional Onsager coefficients in mixtures behave a

l
dm̂

dl
522m̂, l

dL̂

dl
5S 211

1

2
zfD L̂,

l
dL̂12

dl
5S 221

1

2
zm2D L̂12. ~D19!

The corresponding flow equation for the couplingsc1 andc2
are

l
dc1

dl
523c1 , l

dc2

dl
5c2S 231

1

2
zm2D . ~D20!

From Eqs.~D16! and ~D19! the flow equation

TABLE X. One-loop expressions of the dynamicz functions
and amplitude functions for liquids and mixtures.

Function Liquid Mixture

zG
(d) 23/4f t

2 23/4f t
2

zl t
2

f t
2

24
2

f t
2

24~12w3
2!

G
2

f t
2

16
2

f t
2

16
Et

2
f t

2

36
2

f t
2

36~12w3
2!
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l
dw3

dl
52

1

2
w3zG

~d! ~D21!

follows for the time scale ratio introduced in Eq.~3.37!,
which implies immediately the fixed point valuew3* 50. The
mode coupling parameterf t defined in Eq.~4.5! fulfills the
equation

l
d f t

dl
52

1

2
f t~e1zG

~d!1zl t
1zf!. ~D22!

Because ofw3* 50, zG
(d)* andzl t

* are same values as in pu

fluids. As a consequence, also the fixed point value of
mode coupling parameterf t* is identical to the one in pure
fluids.

APPENDIX E: ONE-LOOP EXPRESSIONS

In this appendix we will briefly summarize the explic
results for all functions that are calculated in a perturbat
expansion in one-loop order. The staticz functions and am-
plitude functions are the same as for pure fluids@1# because
the additional densitym1 enters only quadratic in~2.31! and
therefore does not contribute to the perturbation expans
The one-loop expressions are

zf50, z r5
u

2
, zm2

5
g2

2
, zu5

3

2
u, ~E1!
ev

.

e

n

n.

F1
~s!~u!52

1

4
, Ĝff

~s! ~u!51, Bf25
1

2
. ~E2!

The one-loop results for the dynamicz functions and the
dynamic zero-frequency amplitude functions are listed
Table X. In order to allow a comparison we have given the
functions for pure liquids and for mixtures.

At finite frequencies the one-loop expression ofF1(v,w̃)
is given by

F1~v,w̃!52
1

4 H v2

v1v2
ln v

1
1

v12v2
Fv2

2

v1
ln v22

v1
2

v2
ln v1G J ,

~E3!

where we have introduced

v65
v
2

6AS v
2D 2

1 iw̃. ~E4!

The amplitude functionsEt(v,w̃) andEl(v,w̃) are the same
as given in@1# @see Eqs.~5.5! and ~5.24! therein# for pure
fluids, when one replacesw and f t

2 there byw̃ and f t
2/(1

2w3
2). For this reason we do not repeat the lengthy one-lo

expressions in this context.
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